AWSMachineLearning
Objective-C
@interface AWSMachineLearning
Swift
class AWSMachineLearning
Definition of the public APIs exposed by Amazon Machine Learning
-
The service configuration used to instantiate this service client.
Warning
Once the client is instantiated, do not modify the configuration object. It may cause unspecified behaviors.Declaration
Objective-C
@property (nonatomic, strong, readonly) AWSServiceConfiguration *configuration -
Returns the singleton service client. If the singleton object does not exist, the SDK instantiates the default service client with
defaultServiceConfigurationfrom[AWSServiceManager defaultServiceManager]. The reference to this object is maintained by the SDK, and you do not need to retain it manually.For example, set the default service configuration in
- application:didFinishLaunchingWithOptions:Swift
func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool { let credentialProvider = AWSCognitoCredentialsProvider(regionType: .USEast1, identityPoolId: "YourIdentityPoolId") let configuration = AWSServiceConfiguration(region: .USEast1, credentialsProvider: credentialProvider) AWSServiceManager.default().defaultServiceConfiguration = configuration return true}
Objective-C
- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions { AWSCognitoCredentialsProvider *credentialsProvider = [[AWSCognitoCredentialsProvider alloc] initWithRegionType:AWSRegionUSEast1 identityPoolId:@"YourIdentityPoolId"]; AWSServiceConfiguration *configuration = [[AWSServiceConfiguration alloc] initWithRegion:AWSRegionUSEast1 credentialsProvider:credentialsProvider]; [AWSServiceManager defaultServiceManager].defaultServiceConfiguration = configuration; return YES; }Then call the following to get the default service client:
Swift
let MachineLearning = AWSMachineLearning.default()Objective-C
AWSMachineLearning *MachineLearning = [AWSMachineLearning defaultMachineLearning];Declaration
Objective-C
+ (nonnull instancetype)defaultMachineLearning;Swift
class func `default`() -> SelfReturn Value
The default service client.
-
Creates a service client with the given service configuration and registers it for the key.
For example, set the default service configuration in
- application:didFinishLaunchingWithOptions:Swift
func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool { let credentialProvider = AWSCognitoCredentialsProvider(regionType: .USEast1, identityPoolId: "YourIdentityPoolId") let configuration = AWSServiceConfiguration(region: .USWest2, credentialsProvider: credentialProvider) AWSMachineLearning.register(with: configuration!, forKey: "USWest2MachineLearning") return true}
Objective-C
- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions { AWSCognitoCredentialsProvider *credentialsProvider = [[AWSCognitoCredentialsProvider alloc] initWithRegionType:AWSRegionUSEast1 identityPoolId:@"YourIdentityPoolId"]; AWSServiceConfiguration *configuration = [[AWSServiceConfiguration alloc] initWithRegion:AWSRegionUSWest2 credentialsProvider:credentialsProvider]; [AWSMachineLearning registerMachineLearningWithConfiguration:configuration forKey:@"USWest2MachineLearning"]; return YES; }Then call the following to get the service client:
Swift
let MachineLearning = AWSMachineLearning(forKey: "USWest2MachineLearning")Objective-C
AWSMachineLearning *MachineLearning = [AWSMachineLearning MachineLearningForKey:@"USWest2MachineLearning"];Warning
After calling this method, do not modify the configuration object. It may cause unspecified behaviors.
Declaration
Objective-C
+ (void)registerMachineLearningWithConfiguration:(id)configuration forKey:(nonnull NSString *)key;Swift
class func register(withConfiguration configuration: Any!, forKey key: String)Parameters
configurationA service configuration object.
keyA string to identify the service client.
-
Retrieves the service client associated with the key. You need to call
+ registerMachineLearningWithConfiguration:forKey:before invoking this method.For example, set the default service configuration in
- application:didFinishLaunchingWithOptions:Swift
func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool { let credentialProvider = AWSCognitoCredentialsProvider(regionType: .USEast1, identityPoolId: "YourIdentityPoolId") let configuration = AWSServiceConfiguration(region: .USWest2, credentialsProvider: credentialProvider) AWSMachineLearning.register(with: configuration!, forKey: "USWest2MachineLearning") return true}
Objective-C
- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions { AWSCognitoCredentialsProvider *credentialsProvider = [[AWSCognitoCredentialsProvider alloc] initWithRegionType:AWSRegionUSEast1 identityPoolId:@"YourIdentityPoolId"]; AWSServiceConfiguration *configuration = [[AWSServiceConfiguration alloc] initWithRegion:AWSRegionUSWest2 credentialsProvider:credentialsProvider]; [AWSMachineLearning registerMachineLearningWithConfiguration:configuration forKey:@"USWest2MachineLearning"]; return YES; }Then call the following to get the service client:
Swift
let MachineLearning = AWSMachineLearning(forKey: "USWest2MachineLearning")Objective-C
AWSMachineLearning *MachineLearning = [AWSMachineLearning MachineLearningForKey:@"USWest2MachineLearning"];Declaration
Objective-C
+ (nonnull instancetype)MachineLearningForKey:(nonnull NSString *)key;Swift
convenience init(forKey key: String)Parameters
keyA string to identify the service client.
Return Value
An instance of the service client.
-
Removes the service client associated with the key and release it.
Warning
Before calling this method, make sure no method is running on this client.
Declaration
Objective-C
+ (void)removeMachineLearningForKey:(nonnull NSString *)key;Swift
class func remove(forKey key: String)Parameters
keyA string to identify the service client.
-
Adds one or more tags to an object, up to a limit of 10. Each tag consists of a key and an optional value. If you add a tag using a key that is already associated with the ML object,
AddTagsupdates the tag’s value.See
AWSMachineLearningAddTagsInput
See
AWSMachineLearningAddTagsOutput
Declaration
Objective-C
- (id)addTags:(nonnull AWSMachineLearningAddTagsInput *)request;Swift
func addTags(_ request: AWSMachineLearningAddTagsInput) -> Any!Parameters
requestA container for the necessary parameters to execute the AddTags service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningAddTagsOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInvalidTag,AWSMachineLearningErrorTagLimitExceeded,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Adds one or more tags to an object, up to a limit of 10. Each tag consists of a key and an optional value. If you add a tag using a key that is already associated with the ML object,
AddTagsupdates the tag’s value.See
AWSMachineLearningAddTagsInput
See
AWSMachineLearningAddTagsOutput
Declaration
Objective-C
- (void)addTags:(nonnull AWSMachineLearningAddTagsInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningAddTagsOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func addTags(_ request: AWSMachineLearningAddTagsInput) async throws -> AWSMachineLearningAddTagsOutputParameters
requestA container for the necessary parameters to execute the AddTags service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInvalidTag,AWSMachineLearningErrorTagLimitExceeded,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Generates predictions for a group of observations. The observations to process exist in one or more data files referenced by a
DataSource. This operation creates a newBatchPrediction, and uses anMLModeland the data files referenced by theDataSourceas information sources.CreateBatchPredictionis an asynchronous operation. In response toCreateBatchPrediction, Amazon Machine Learning (Amazon ML) immediately returns and sets theBatchPredictionstatus toPENDING. After theBatchPredictioncompletes, Amazon ML sets the status toCOMPLETED.You can poll for status updates by using the GetBatchPrediction operation and checking the
Statusparameter of the result. After theCOMPLETEDstatus appears, the results are available in the location specified by theOutputUriparameter.See
AWSMachineLearningCreateBatchPredictionInput
See
AWSMachineLearningCreateBatchPredictionOutput
Declaration
Objective-C
- (id)createBatchPrediction: (nonnull AWSMachineLearningCreateBatchPredictionInput *)request;Swift
func createBatchPrediction(_ request: AWSMachineLearningCreateBatchPredictionInput) -> Any!Parameters
requestA container for the necessary parameters to execute the CreateBatchPrediction service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningCreateBatchPredictionOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInternalServer,AWSMachineLearningErrorIdempotentParameterMismatch. -
Generates predictions for a group of observations. The observations to process exist in one or more data files referenced by a
DataSource. This operation creates a newBatchPrediction, and uses anMLModeland the data files referenced by theDataSourceas information sources.CreateBatchPredictionis an asynchronous operation. In response toCreateBatchPrediction, Amazon Machine Learning (Amazon ML) immediately returns and sets theBatchPredictionstatus toPENDING. After theBatchPredictioncompletes, Amazon ML sets the status toCOMPLETED.You can poll for status updates by using the GetBatchPrediction operation and checking the
Statusparameter of the result. After theCOMPLETEDstatus appears, the results are available in the location specified by theOutputUriparameter.See
AWSMachineLearningCreateBatchPredictionInput
See
AWSMachineLearningCreateBatchPredictionOutput
Declaration
Objective-C
- (void)createBatchPrediction: (nonnull AWSMachineLearningCreateBatchPredictionInput *)request completionHandler: (void (^_Nullable)( AWSMachineLearningCreateBatchPredictionOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func createBatchPrediction(_ request: AWSMachineLearningCreateBatchPredictionInput) async throws -> AWSMachineLearningCreateBatchPredictionOutputParameters
requestA container for the necessary parameters to execute the CreateBatchPrediction service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInternalServer,AWSMachineLearningErrorIdempotentParameterMismatch. -
Creates a
DataSourceobject from an Amazon Relational Database Service (Amazon RDS). ADataSourcereferences data that can be used to performCreateMLModel,CreateEvaluation, orCreateBatchPredictionoperations.CreateDataSourceFromRDSis an asynchronous operation. In response toCreateDataSourceFromRDS, Amazon Machine Learning (Amazon ML) immediately returns and sets theDataSourcestatus toPENDING. After theDataSourceis created and ready for use, Amazon ML sets theStatusparameter toCOMPLETED.DataSourcein theCOMPLETEDorPENDINGstate can be used only to perform>CreateMLModel>,CreateEvaluation, orCreateBatchPredictionoperations.If Amazon ML cannot accept the input source, it sets the
Statusparameter toFAILEDand includes an error message in theMessageattribute of theGetDataSourceoperation response.See
AWSMachineLearningCreateDataSourceFromRDSInput
See
AWSMachineLearningCreateDataSourceFromRDSOutput
Declaration
Objective-C
- (id)createDataSourceFromRDS: (nonnull AWSMachineLearningCreateDataSourceFromRDSInput *)request;Swift
func createDataSource(fromRDS request: AWSMachineLearningCreateDataSourceFromRDSInput) -> Any!Parameters
requestA container for the necessary parameters to execute the CreateDataSourceFromRDS service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningCreateDataSourceFromRDSOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInternalServer,AWSMachineLearningErrorIdempotentParameterMismatch. -
Creates a
DataSourceobject from an Amazon Relational Database Service (Amazon RDS). ADataSourcereferences data that can be used to performCreateMLModel,CreateEvaluation, orCreateBatchPredictionoperations.CreateDataSourceFromRDSis an asynchronous operation. In response toCreateDataSourceFromRDS, Amazon Machine Learning (Amazon ML) immediately returns and sets theDataSourcestatus toPENDING. After theDataSourceis created and ready for use, Amazon ML sets theStatusparameter toCOMPLETED.DataSourcein theCOMPLETEDorPENDINGstate can be used only to perform>CreateMLModel>,CreateEvaluation, orCreateBatchPredictionoperations.If Amazon ML cannot accept the input source, it sets the
Statusparameter toFAILEDand includes an error message in theMessageattribute of theGetDataSourceoperation response.See
AWSMachineLearningCreateDataSourceFromRDSInput
See
AWSMachineLearningCreateDataSourceFromRDSOutput
Declaration
Objective-C
- (void) createDataSourceFromRDS: (nonnull AWSMachineLearningCreateDataSourceFromRDSInput *)request completionHandler: (void (^_Nullable)( AWSMachineLearningCreateDataSourceFromRDSOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func createDataSource(fromRDS request: AWSMachineLearningCreateDataSourceFromRDSInput) async throws -> AWSMachineLearningCreateDataSourceFromRDSOutputParameters
requestA container for the necessary parameters to execute the CreateDataSourceFromRDS service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInternalServer,AWSMachineLearningErrorIdempotentParameterMismatch. -
Creates a
DataSourcefrom a database hosted on an Amazon Redshift cluster. ADataSourcereferences data that can be used to perform eitherCreateMLModel,CreateEvaluation, orCreateBatchPredictionoperations.CreateDataSourceFromRedshiftis an asynchronous operation. In response toCreateDataSourceFromRedshift, Amazon Machine Learning (Amazon ML) immediately returns and sets theDataSourcestatus toPENDING. After theDataSourceis created and ready for use, Amazon ML sets theStatusparameter toCOMPLETED.DataSourceinCOMPLETEDorPENDINGstates can be used to perform onlyCreateMLModel,CreateEvaluation, orCreateBatchPredictionoperations.If Amazon ML can’t accept the input source, it sets the
Statusparameter toFAILEDand includes an error message in theMessageattribute of theGetDataSourceoperation response.The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified by a
SelectSqlQueryquery. Amazon ML executes anUnloadcommand in Amazon Redshift to transfer the result set of theSelectSqlQueryquery toS3StagingLocation.After the
<?oxy_insert_start author=“laurama” timestamp=“20160406T153842-0700”>DataSourcehas been created, it’s ready for use in evaluations and batch predictions. If you plan to use theDataSourceto train anMLModel, theDataSourcealso requires a recipe. A recipe describes how each input variable will be used in training anMLModel. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.You can’t change an existing datasource, but you can copy and modify the settings from an existing Amazon Redshift datasource to create a new datasource. To do so, call
<?oxy_insert_end>GetDataSourcefor an existing datasource and copy the values to aCreateDataSourcecall. Change the settings that you want to change and make sure that all required fields have the appropriate values.See
AWSMachineLearningCreateDataSourceFromRedshiftInput
See
AWSMachineLearningCreateDataSourceFromRedshiftOutput
Declaration
Objective-C
- (id)createDataSourceFromRedshift: (nonnull AWSMachineLearningCreateDataSourceFromRedshiftInput *)request;Swift
func createDataSource(fromRedshift request: AWSMachineLearningCreateDataSourceFromRedshiftInput) -> Any!Parameters
requestA container for the necessary parameters to execute the CreateDataSourceFromRedshift service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningCreateDataSourceFromRedshiftOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInternalServer,AWSMachineLearningErrorIdempotentParameterMismatch. -
Creates a
DataSourcefrom a database hosted on an Amazon Redshift cluster. ADataSourcereferences data that can be used to perform eitherCreateMLModel,CreateEvaluation, orCreateBatchPredictionoperations.CreateDataSourceFromRedshiftis an asynchronous operation. In response toCreateDataSourceFromRedshift, Amazon Machine Learning (Amazon ML) immediately returns and sets theDataSourcestatus toPENDING. After theDataSourceis created and ready for use, Amazon ML sets theStatusparameter toCOMPLETED.DataSourceinCOMPLETEDorPENDINGstates can be used to perform onlyCreateMLModel,CreateEvaluation, orCreateBatchPredictionoperations.If Amazon ML can’t accept the input source, it sets the
Statusparameter toFAILEDand includes an error message in theMessageattribute of theGetDataSourceoperation response.The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified by a
SelectSqlQueryquery. Amazon ML executes anUnloadcommand in Amazon Redshift to transfer the result set of theSelectSqlQueryquery toS3StagingLocation.After the
<?oxy_insert_start author=“laurama” timestamp=“20160406T153842-0700”>DataSourcehas been created, it’s ready for use in evaluations and batch predictions. If you plan to use theDataSourceto train anMLModel, theDataSourcealso requires a recipe. A recipe describes how each input variable will be used in training anMLModel. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.You can’t change an existing datasource, but you can copy and modify the settings from an existing Amazon Redshift datasource to create a new datasource. To do so, call
<?oxy_insert_end>GetDataSourcefor an existing datasource and copy the values to aCreateDataSourcecall. Change the settings that you want to change and make sure that all required fields have the appropriate values.See
AWSMachineLearningCreateDataSourceFromRedshiftInput
See
AWSMachineLearningCreateDataSourceFromRedshiftOutput
Declaration
Objective-C
- (void)createDataSourceFromRedshift: (nonnull AWSMachineLearningCreateDataSourceFromRedshiftInput *) request completionHandler: (void (^_Nullable)( AWSMachineLearningCreateDataSourceFromRedshiftOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func createDataSource(fromRedshift request: AWSMachineLearningCreateDataSourceFromRedshiftInput) async throws -> AWSMachineLearningCreateDataSourceFromRedshiftOutputParameters
requestA container for the necessary parameters to execute the CreateDataSourceFromRedshift service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInternalServer,AWSMachineLearningErrorIdempotentParameterMismatch. -
Creates a
DataSourceobject. ADataSourcereferences data that can be used to performCreateMLModel,CreateEvaluation, orCreateBatchPredictionoperations.CreateDataSourceFromS3is an asynchronous operation. In response toCreateDataSourceFromS3, Amazon Machine Learning (Amazon ML) immediately returns and sets theDataSourcestatus toPENDING. After theDataSourcehas been created and is ready for use, Amazon ML sets theStatusparameter toCOMPLETED.DataSourcein theCOMPLETEDorPENDINGstate can be used to perform onlyCreateMLModel,CreateEvaluationorCreateBatchPredictionoperations.If Amazon ML can’t accept the input source, it sets the
Statusparameter toFAILEDand includes an error message in theMessageattribute of theGetDataSourceoperation response.The observation data used in a
DataSourceshould be ready to use; that is, it should have a consistent structure, and missing data values should be kept to a minimum. The observation data must reside in one or more .csv files in an Amazon Simple Storage Service (Amazon S3) location, along with a schema that describes the data items by name and type. The same schema must be used for all of the data files referenced by theDataSource.After the
DataSourcehas been created, it’s ready to use in evaluations and batch predictions. If you plan to use theDataSourceto train anMLModel, theDataSourcealso needs a recipe. A recipe describes how each input variable will be used in training anMLModel. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.See
AWSMachineLearningCreateDataSourceFromS3Input
See
AWSMachineLearningCreateDataSourceFromS3Output
Declaration
Objective-C
- (id)createDataSourceFromS3: (nonnull AWSMachineLearningCreateDataSourceFromS3Input *)request;Swift
func createDataSource(fromS3 request: AWSMachineLearningCreateDataSourceFromS3Input) -> Any!Parameters
requestA container for the necessary parameters to execute the CreateDataSourceFromS3 service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningCreateDataSourceFromS3Output. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInternalServer,AWSMachineLearningErrorIdempotentParameterMismatch. -
Creates a
DataSourceobject. ADataSourcereferences data that can be used to performCreateMLModel,CreateEvaluation, orCreateBatchPredictionoperations.CreateDataSourceFromS3is an asynchronous operation. In response toCreateDataSourceFromS3, Amazon Machine Learning (Amazon ML) immediately returns and sets theDataSourcestatus toPENDING. After theDataSourcehas been created and is ready for use, Amazon ML sets theStatusparameter toCOMPLETED.DataSourcein theCOMPLETEDorPENDINGstate can be used to perform onlyCreateMLModel,CreateEvaluationorCreateBatchPredictionoperations.If Amazon ML can’t accept the input source, it sets the
Statusparameter toFAILEDand includes an error message in theMessageattribute of theGetDataSourceoperation response.The observation data used in a
DataSourceshould be ready to use; that is, it should have a consistent structure, and missing data values should be kept to a minimum. The observation data must reside in one or more .csv files in an Amazon Simple Storage Service (Amazon S3) location, along with a schema that describes the data items by name and type. The same schema must be used for all of the data files referenced by theDataSource.After the
DataSourcehas been created, it’s ready to use in evaluations and batch predictions. If you plan to use theDataSourceto train anMLModel, theDataSourcealso needs a recipe. A recipe describes how each input variable will be used in training anMLModel. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.See
AWSMachineLearningCreateDataSourceFromS3Input
See
AWSMachineLearningCreateDataSourceFromS3Output
Declaration
Objective-C
- (void)createDataSourceFromS3: (nonnull AWSMachineLearningCreateDataSourceFromS3Input *)request completionHandler: (void (^_Nullable)( AWSMachineLearningCreateDataSourceFromS3Output *_Nullable, NSError *_Nullable))completionHandler;Swift
func createDataSource(fromS3 request: AWSMachineLearningCreateDataSourceFromS3Input) async throws -> AWSMachineLearningCreateDataSourceFromS3OutputParameters
requestA container for the necessary parameters to execute the CreateDataSourceFromS3 service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInternalServer,AWSMachineLearningErrorIdempotentParameterMismatch. -
Creates a new
Evaluationof anMLModel. AnMLModelis evaluated on a set of observations associated to aDataSource. Like aDataSourcefor anMLModel, theDataSourcefor anEvaluationcontains values for theTarget Variable. TheEvaluationcompares the predicted result for each observation to the actual outcome and provides a summary so that you know how effective theMLModelfunctions on the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the correspondingMLModelType:BINARY,REGRESSIONorMULTICLASS.CreateEvaluationis an asynchronous operation. In response toCreateEvaluation, Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status toPENDING. After theEvaluationis created and ready for use, Amazon ML sets the status toCOMPLETED.You can use the
GetEvaluationoperation to check progress of the evaluation during the creation operation.See
AWSMachineLearningCreateEvaluationInput
See
AWSMachineLearningCreateEvaluationOutput
Declaration
Objective-C
- (id)createEvaluation: (nonnull AWSMachineLearningCreateEvaluationInput *)request;Swift
func createEvaluation(_ request: AWSMachineLearningCreateEvaluationInput) -> Any!Parameters
requestA container for the necessary parameters to execute the CreateEvaluation service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningCreateEvaluationOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInternalServer,AWSMachineLearningErrorIdempotentParameterMismatch. -
Creates a new
Evaluationof anMLModel. AnMLModelis evaluated on a set of observations associated to aDataSource. Like aDataSourcefor anMLModel, theDataSourcefor anEvaluationcontains values for theTarget Variable. TheEvaluationcompares the predicted result for each observation to the actual outcome and provides a summary so that you know how effective theMLModelfunctions on the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the correspondingMLModelType:BINARY,REGRESSIONorMULTICLASS.CreateEvaluationis an asynchronous operation. In response toCreateEvaluation, Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status toPENDING. After theEvaluationis created and ready for use, Amazon ML sets the status toCOMPLETED.You can use the
GetEvaluationoperation to check progress of the evaluation during the creation operation.See
AWSMachineLearningCreateEvaluationInput
See
AWSMachineLearningCreateEvaluationOutput
Declaration
Objective-C
- (void) createEvaluation:(nonnull AWSMachineLearningCreateEvaluationInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningCreateEvaluationOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func createEvaluation(_ request: AWSMachineLearningCreateEvaluationInput) async throws -> AWSMachineLearningCreateEvaluationOutputParameters
requestA container for the necessary parameters to execute the CreateEvaluation service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInternalServer,AWSMachineLearningErrorIdempotentParameterMismatch. -
Creates a new
MLModelusing theDataSourceand the recipe as information sources.An
MLModelis nearly immutable. Users can update only theMLModelNameand theScoreThresholdin anMLModelwithout creating a newMLModel.CreateMLModelis an asynchronous operation. In response toCreateMLModel, Amazon Machine Learning (Amazon ML) immediately returns and sets theMLModelstatus toPENDING. After theMLModelhas been created and ready is for use, Amazon ML sets the status toCOMPLETED.You can use the
GetMLModeloperation to check the progress of theMLModelduring the creation operation.CreateMLModelrequires aDataSourcewith computed statistics, which can be created by settingComputeStatisticstotrueinCreateDataSourceFromRDS,CreateDataSourceFromS3, orCreateDataSourceFromRedshiftoperations.See
AWSMachineLearningCreateMLModelInput
See
AWSMachineLearningCreateMLModelOutput
Declaration
Objective-C
- (id)createMLModel:(nonnull AWSMachineLearningCreateMLModelInput *)request;Swift
func createMLModel(_ request: AWSMachineLearningCreateMLModelInput) -> Any!Parameters
requestA container for the necessary parameters to execute the CreateMLModel service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningCreateMLModelOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInternalServer,AWSMachineLearningErrorIdempotentParameterMismatch. -
Creates a new
MLModelusing theDataSourceand the recipe as information sources.An
MLModelis nearly immutable. Users can update only theMLModelNameand theScoreThresholdin anMLModelwithout creating a newMLModel.CreateMLModelis an asynchronous operation. In response toCreateMLModel, Amazon Machine Learning (Amazon ML) immediately returns and sets theMLModelstatus toPENDING. After theMLModelhas been created and ready is for use, Amazon ML sets the status toCOMPLETED.You can use the
GetMLModeloperation to check the progress of theMLModelduring the creation operation.CreateMLModelrequires aDataSourcewith computed statistics, which can be created by settingComputeStatisticstotrueinCreateDataSourceFromRDS,CreateDataSourceFromS3, orCreateDataSourceFromRedshiftoperations.See
AWSMachineLearningCreateMLModelInput
See
AWSMachineLearningCreateMLModelOutput
Declaration
Objective-C
- (void)createMLModel:(nonnull AWSMachineLearningCreateMLModelInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningCreateMLModelOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func createMLModel(_ request: AWSMachineLearningCreateMLModelInput) async throws -> AWSMachineLearningCreateMLModelOutputParameters
requestA container for the necessary parameters to execute the CreateMLModel service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInternalServer,AWSMachineLearningErrorIdempotentParameterMismatch. -
Creates a real-time endpoint for the
MLModel. The endpoint contains the URI of theMLModel; that is, the location to send real-time prediction requests for the specifiedMLModel.See
AWSMachineLearningCreateRealtimeEndpointInput
See
AWSMachineLearningCreateRealtimeEndpointOutput
Declaration
Objective-C
- (id)createRealtimeEndpoint: (nonnull AWSMachineLearningCreateRealtimeEndpointInput *)request;Swift
func createRealtimeEndpoint(_ request: AWSMachineLearningCreateRealtimeEndpointInput) -> Any!Parameters
requestA container for the necessary parameters to execute the CreateRealtimeEndpoint service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningCreateRealtimeEndpointOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Creates a real-time endpoint for the
MLModel. The endpoint contains the URI of theMLModel; that is, the location to send real-time prediction requests for the specifiedMLModel.See
AWSMachineLearningCreateRealtimeEndpointInput
See
AWSMachineLearningCreateRealtimeEndpointOutput
Declaration
Objective-C
- (void)createRealtimeEndpoint: (nonnull AWSMachineLearningCreateRealtimeEndpointInput *)request completionHandler: (void (^_Nullable)( AWSMachineLearningCreateRealtimeEndpointOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func createRealtimeEndpoint(_ request: AWSMachineLearningCreateRealtimeEndpointInput) async throws -> AWSMachineLearningCreateRealtimeEndpointOutputParameters
requestA container for the necessary parameters to execute the CreateRealtimeEndpoint service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Assigns the DELETED status to a
BatchPrediction, rendering it unusable.After using the
DeleteBatchPredictionoperation, you can use the GetBatchPrediction operation to verify that the status of theBatchPredictionchanged to DELETED.Caution: The result of the
DeleteBatchPredictionoperation is irreversible.See
AWSMachineLearningDeleteBatchPredictionInput
See
AWSMachineLearningDeleteBatchPredictionOutput
Declaration
Objective-C
- (id)deleteBatchPrediction: (nonnull AWSMachineLearningDeleteBatchPredictionInput *)request;Swift
func deleteBatchPrediction(_ request: AWSMachineLearningDeleteBatchPredictionInput) -> Any!Parameters
requestA container for the necessary parameters to execute the DeleteBatchPrediction service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningDeleteBatchPredictionOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Assigns the DELETED status to a
BatchPrediction, rendering it unusable.After using the
DeleteBatchPredictionoperation, you can use the GetBatchPrediction operation to verify that the status of theBatchPredictionchanged to DELETED.Caution: The result of the
DeleteBatchPredictionoperation is irreversible.See
AWSMachineLearningDeleteBatchPredictionInput
See
AWSMachineLearningDeleteBatchPredictionOutput
Declaration
Objective-C
- (void)deleteBatchPrediction: (nonnull AWSMachineLearningDeleteBatchPredictionInput *)request completionHandler: (void (^_Nullable)( AWSMachineLearningDeleteBatchPredictionOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func deleteBatchPrediction(_ request: AWSMachineLearningDeleteBatchPredictionInput) async throws -> AWSMachineLearningDeleteBatchPredictionOutputParameters
requestA container for the necessary parameters to execute the DeleteBatchPrediction service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Assigns the DELETED status to a
DataSource, rendering it unusable.After using the
DeleteDataSourceoperation, you can use the GetDataSource operation to verify that the status of theDataSourcechanged to DELETED.Caution: The results of the
DeleteDataSourceoperation are irreversible.See
AWSMachineLearningDeleteDataSourceInput
See
AWSMachineLearningDeleteDataSourceOutput
Declaration
Objective-C
- (id)deleteDataSource: (nonnull AWSMachineLearningDeleteDataSourceInput *)request;Swift
func deleteDataSource(_ request: AWSMachineLearningDeleteDataSourceInput) -> Any!Parameters
requestA container for the necessary parameters to execute the DeleteDataSource service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningDeleteDataSourceOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Assigns the DELETED status to a
DataSource, rendering it unusable.After using the
DeleteDataSourceoperation, you can use the GetDataSource operation to verify that the status of theDataSourcechanged to DELETED.Caution: The results of the
DeleteDataSourceoperation are irreversible.See
AWSMachineLearningDeleteDataSourceInput
See
AWSMachineLearningDeleteDataSourceOutput
Declaration
Objective-C
- (void) deleteDataSource:(nonnull AWSMachineLearningDeleteDataSourceInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningDeleteDataSourceOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func deleteDataSource(_ request: AWSMachineLearningDeleteDataSourceInput) async throws -> AWSMachineLearningDeleteDataSourceOutputParameters
requestA container for the necessary parameters to execute the DeleteDataSource service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Assigns the
DELETEDstatus to anEvaluation, rendering it unusable.After invoking the
DeleteEvaluationoperation, you can use theGetEvaluationoperation to verify that the status of theEvaluationchanged toDELETED.Caution The results of the
DeleteEvaluationoperation are irreversible.See
AWSMachineLearningDeleteEvaluationInput
See
AWSMachineLearningDeleteEvaluationOutput
Declaration
Objective-C
- (id)deleteEvaluation: (nonnull AWSMachineLearningDeleteEvaluationInput *)request;Swift
func deleteEvaluation(_ request: AWSMachineLearningDeleteEvaluationInput) -> Any!Parameters
requestA container for the necessary parameters to execute the DeleteEvaluation service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningDeleteEvaluationOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Assigns the
DELETEDstatus to anEvaluation, rendering it unusable.After invoking the
DeleteEvaluationoperation, you can use theGetEvaluationoperation to verify that the status of theEvaluationchanged toDELETED.Caution The results of the
DeleteEvaluationoperation are irreversible.See
AWSMachineLearningDeleteEvaluationInput
See
AWSMachineLearningDeleteEvaluationOutput
Declaration
Objective-C
- (void) deleteEvaluation:(nonnull AWSMachineLearningDeleteEvaluationInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningDeleteEvaluationOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func deleteEvaluation(_ request: AWSMachineLearningDeleteEvaluationInput) async throws -> AWSMachineLearningDeleteEvaluationOutputParameters
requestA container for the necessary parameters to execute the DeleteEvaluation service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Assigns the
DELETEDstatus to anMLModel, rendering it unusable.After using the
DeleteMLModeloperation, you can use theGetMLModeloperation to verify that the status of theMLModelchanged to DELETED.Caution: The result of the
DeleteMLModeloperation is irreversible.See
AWSMachineLearningDeleteMLModelInput
See
AWSMachineLearningDeleteMLModelOutput
Declaration
Objective-C
- (id)deleteMLModel:(nonnull AWSMachineLearningDeleteMLModelInput *)request;Swift
func deleteMLModel(_ request: AWSMachineLearningDeleteMLModelInput) -> Any!Parameters
requestA container for the necessary parameters to execute the DeleteMLModel service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningDeleteMLModelOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Assigns the
DELETEDstatus to anMLModel, rendering it unusable.After using the
DeleteMLModeloperation, you can use theGetMLModeloperation to verify that the status of theMLModelchanged to DELETED.Caution: The result of the
DeleteMLModeloperation is irreversible.See
AWSMachineLearningDeleteMLModelInput
See
AWSMachineLearningDeleteMLModelOutput
Declaration
Objective-C
- (void)deleteMLModel:(nonnull AWSMachineLearningDeleteMLModelInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningDeleteMLModelOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func deleteMLModel(_ request: AWSMachineLearningDeleteMLModelInput) async throws -> AWSMachineLearningDeleteMLModelOutputParameters
requestA container for the necessary parameters to execute the DeleteMLModel service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Deletes a real time endpoint of an
MLModel.See
AWSMachineLearningDeleteRealtimeEndpointInput
See
AWSMachineLearningDeleteRealtimeEndpointOutput
Declaration
Objective-C
- (id)deleteRealtimeEndpoint: (nonnull AWSMachineLearningDeleteRealtimeEndpointInput *)request;Swift
func deleteRealtimeEndpoint(_ request: AWSMachineLearningDeleteRealtimeEndpointInput) -> Any!Parameters
requestA container for the necessary parameters to execute the DeleteRealtimeEndpoint service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningDeleteRealtimeEndpointOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Deletes a real time endpoint of an
MLModel.See
AWSMachineLearningDeleteRealtimeEndpointInput
See
AWSMachineLearningDeleteRealtimeEndpointOutput
Declaration
Objective-C
- (void)deleteRealtimeEndpoint: (nonnull AWSMachineLearningDeleteRealtimeEndpointInput *)request completionHandler: (void (^_Nullable)( AWSMachineLearningDeleteRealtimeEndpointOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func deleteRealtimeEndpoint(_ request: AWSMachineLearningDeleteRealtimeEndpointInput) async throws -> AWSMachineLearningDeleteRealtimeEndpointOutputParameters
requestA container for the necessary parameters to execute the DeleteRealtimeEndpoint service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Deletes the specified tags associated with an ML object. After this operation is complete, you can’t recover deleted tags.
If you specify a tag that doesn’t exist, Amazon ML ignores it.
See
AWSMachineLearningDeleteTagsInput
See
AWSMachineLearningDeleteTagsOutput
Declaration
Objective-C
- (id)deleteTags:(nonnull AWSMachineLearningDeleteTagsInput *)request;Swift
func deleteTags(_ request: AWSMachineLearningDeleteTagsInput) -> Any!Parameters
requestA container for the necessary parameters to execute the DeleteTags service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningDeleteTagsOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInvalidTag,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Deletes the specified tags associated with an ML object. After this operation is complete, you can’t recover deleted tags.
If you specify a tag that doesn’t exist, Amazon ML ignores it.
See
AWSMachineLearningDeleteTagsInput
See
AWSMachineLearningDeleteTagsOutput
Declaration
Objective-C
- (void)deleteTags:(nonnull AWSMachineLearningDeleteTagsInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningDeleteTagsOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func deleteTags(_ request: AWSMachineLearningDeleteTagsInput) async throws -> AWSMachineLearningDeleteTagsOutputParameters
requestA container for the necessary parameters to execute the DeleteTags service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInvalidTag,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Returns a list of
BatchPredictionoperations that match the search criteria in the request.See
AWSMachineLearningDescribeBatchPredictionsInput
See
AWSMachineLearningDescribeBatchPredictionsOutput
Declaration
Objective-C
- (id)describeBatchPredictions: (nonnull AWSMachineLearningDescribeBatchPredictionsInput *)request;Swift
func describeBatchPredictions(_ request: AWSMachineLearningDescribeBatchPredictionsInput) -> Any!Parameters
requestA container for the necessary parameters to execute the DescribeBatchPredictions service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningDescribeBatchPredictionsOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInternalServer. -
Returns a list of
BatchPredictionoperations that match the search criteria in the request.See
AWSMachineLearningDescribeBatchPredictionsInput
See
AWSMachineLearningDescribeBatchPredictionsOutput
Declaration
Objective-C
- (void) describeBatchPredictions: (nonnull AWSMachineLearningDescribeBatchPredictionsInput *)request completionHandler: (void (^_Nullable)( AWSMachineLearningDescribeBatchPredictionsOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func describeBatchPredictions(_ request: AWSMachineLearningDescribeBatchPredictionsInput) async throws -> AWSMachineLearningDescribeBatchPredictionsOutputParameters
requestA container for the necessary parameters to execute the DescribeBatchPredictions service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInternalServer. -
Returns a list of
DataSourcethat match the search criteria in the request.See
AWSMachineLearningDescribeDataSourcesInput
See
AWSMachineLearningDescribeDataSourcesOutput
Declaration
Objective-C
- (id)describeDataSources: (nonnull AWSMachineLearningDescribeDataSourcesInput *)request;Swift
func describeDataSources(_ request: AWSMachineLearningDescribeDataSourcesInput) -> Any!Parameters
requestA container for the necessary parameters to execute the DescribeDataSources service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningDescribeDataSourcesOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInternalServer. -
Returns a list of
DataSourcethat match the search criteria in the request.See
AWSMachineLearningDescribeDataSourcesInput
See
AWSMachineLearningDescribeDataSourcesOutput
Declaration
Objective-C
- (void)describeDataSources: (nonnull AWSMachineLearningDescribeDataSourcesInput *)request completionHandler: (void (^_Nullable)( AWSMachineLearningDescribeDataSourcesOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func describeDataSources(_ request: AWSMachineLearningDescribeDataSourcesInput) async throws -> AWSMachineLearningDescribeDataSourcesOutputParameters
requestA container for the necessary parameters to execute the DescribeDataSources service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInternalServer. -
Returns a list of
DescribeEvaluationsthat match the search criteria in the request.See
AWSMachineLearningDescribeEvaluationsInput
See
AWSMachineLearningDescribeEvaluationsOutput
Declaration
Objective-C
- (id)describeEvaluations: (nonnull AWSMachineLearningDescribeEvaluationsInput *)request;Swift
func describeEvaluations(_ request: AWSMachineLearningDescribeEvaluationsInput) -> Any!Parameters
requestA container for the necessary parameters to execute the DescribeEvaluations service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningDescribeEvaluationsOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInternalServer. -
Returns a list of
DescribeEvaluationsthat match the search criteria in the request.See
AWSMachineLearningDescribeEvaluationsInput
See
AWSMachineLearningDescribeEvaluationsOutput
Declaration
Objective-C
- (void)describeEvaluations: (nonnull AWSMachineLearningDescribeEvaluationsInput *)request completionHandler: (void (^_Nullable)( AWSMachineLearningDescribeEvaluationsOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func describeEvaluations(_ request: AWSMachineLearningDescribeEvaluationsInput) async throws -> AWSMachineLearningDescribeEvaluationsOutputParameters
requestA container for the necessary parameters to execute the DescribeEvaluations service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInternalServer. -
Returns a list of
MLModelthat match the search criteria in the request.See
AWSMachineLearningDescribeMLModelsInput
See
AWSMachineLearningDescribeMLModelsOutput
Declaration
Objective-C
- (id)describeMLModels: (nonnull AWSMachineLearningDescribeMLModelsInput *)request;Swift
func describeMLModels(_ request: AWSMachineLearningDescribeMLModelsInput) -> Any!Parameters
requestA container for the necessary parameters to execute the DescribeMLModels service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningDescribeMLModelsOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInternalServer. -
Returns a list of
MLModelthat match the search criteria in the request.See
AWSMachineLearningDescribeMLModelsInput
See
AWSMachineLearningDescribeMLModelsOutput
Declaration
Objective-C
- (void) describeMLModels:(nonnull AWSMachineLearningDescribeMLModelsInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningDescribeMLModelsOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func describeMLModels(_ request: AWSMachineLearningDescribeMLModelsInput) async throws -> AWSMachineLearningDescribeMLModelsOutputParameters
requestA container for the necessary parameters to execute the DescribeMLModels service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorInternalServer. -
Describes one or more of the tags for your Amazon ML object.
See
AWSMachineLearningDescribeTagsInput
See
AWSMachineLearningDescribeTagsOutput
Declaration
Objective-C
- (id)describeTags:(nonnull AWSMachineLearningDescribeTagsInput *)request;Swift
func describeTags(_ request: AWSMachineLearningDescribeTagsInput) -> Any!Parameters
requestA container for the necessary parameters to execute the DescribeTags service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningDescribeTagsOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Describes one or more of the tags for your Amazon ML object.
See
AWSMachineLearningDescribeTagsInput
See
AWSMachineLearningDescribeTagsOutput
Declaration
Objective-C
- (void)describeTags:(nonnull AWSMachineLearningDescribeTagsInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningDescribeTagsOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func describeTags(_ request: AWSMachineLearningDescribeTagsInput) async throws -> AWSMachineLearningDescribeTagsOutputParameters
requestA container for the necessary parameters to execute the DescribeTags service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Returns a
BatchPredictionthat includes detailed metadata, status, and data file information for aBatch Predictionrequest.See
AWSMachineLearningGetBatchPredictionInput
See
AWSMachineLearningGetBatchPredictionOutput
Declaration
Objective-C
- (id)getBatchPrediction: (nonnull AWSMachineLearningGetBatchPredictionInput *)request;Swift
func getBatchPrediction(_ request: AWSMachineLearningGetBatchPredictionInput) -> Any!Parameters
requestA container for the necessary parameters to execute the GetBatchPrediction service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningGetBatchPredictionOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Returns a
BatchPredictionthat includes detailed metadata, status, and data file information for aBatch Predictionrequest.See
AWSMachineLearningGetBatchPredictionInput
See
AWSMachineLearningGetBatchPredictionOutput
Declaration
Objective-C
- (void)getBatchPrediction: (nonnull AWSMachineLearningGetBatchPredictionInput *)request completionHandler: (void (^_Nullable)( AWSMachineLearningGetBatchPredictionOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func batchPrediction(_ request: AWSMachineLearningGetBatchPredictionInput) async throws -> AWSMachineLearningGetBatchPredictionOutputParameters
requestA container for the necessary parameters to execute the GetBatchPrediction service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Returns a
DataSourcethat includes metadata and data file information, as well as the current status of theDataSource.GetDataSourceprovides results in normal or verbose format. The verbose format adds the schema description and the list of files pointed to by the DataSource to the normal format.See
AWSMachineLearningGetDataSourceInput
See
AWSMachineLearningGetDataSourceOutput
Declaration
Objective-C
- (id)getDataSource:(nonnull AWSMachineLearningGetDataSourceInput *)request;Swift
func getDataSource(_ request: AWSMachineLearningGetDataSourceInput) -> Any!Parameters
requestA container for the necessary parameters to execute the GetDataSource service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningGetDataSourceOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Returns a
DataSourcethat includes metadata and data file information, as well as the current status of theDataSource.GetDataSourceprovides results in normal or verbose format. The verbose format adds the schema description and the list of files pointed to by the DataSource to the normal format.See
AWSMachineLearningGetDataSourceInput
See
AWSMachineLearningGetDataSourceOutput
Declaration
Objective-C
- (void)getDataSource:(nonnull AWSMachineLearningGetDataSourceInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningGetDataSourceOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func dataSource(_ request: AWSMachineLearningGetDataSourceInput) async throws -> AWSMachineLearningGetDataSourceOutputParameters
requestA container for the necessary parameters to execute the GetDataSource service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Returns an
Evaluationthat includes metadata as well as the current status of theEvaluation.See
AWSMachineLearningGetEvaluationInput
See
AWSMachineLearningGetEvaluationOutput
Declaration
Objective-C
- (id)getEvaluation:(nonnull AWSMachineLearningGetEvaluationInput *)request;Swift
func getEvaluation(_ request: AWSMachineLearningGetEvaluationInput) -> Any!Parameters
requestA container for the necessary parameters to execute the GetEvaluation service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningGetEvaluationOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Returns an
Evaluationthat includes metadata as well as the current status of theEvaluation.See
AWSMachineLearningGetEvaluationInput
See
AWSMachineLearningGetEvaluationOutput
Declaration
Objective-C
- (void)getEvaluation:(nonnull AWSMachineLearningGetEvaluationInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningGetEvaluationOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func evaluation(_ request: AWSMachineLearningGetEvaluationInput) async throws -> AWSMachineLearningGetEvaluationOutputParameters
requestA container for the necessary parameters to execute the GetEvaluation service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Returns an
MLModelthat includes detailed metadata, data source information, and the current status of theMLModel.GetMLModelprovides results in normal or verbose format.See
AWSMachineLearningGetMLModelInput
See
AWSMachineLearningGetMLModelOutput
Declaration
Objective-C
- (id)getMLModel:(nonnull AWSMachineLearningGetMLModelInput *)request;Swift
func getMLModel(_ request: AWSMachineLearningGetMLModelInput) -> Any!Parameters
requestA container for the necessary parameters to execute the GetMLModel service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningGetMLModelOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Returns an
MLModelthat includes detailed metadata, data source information, and the current status of theMLModel.GetMLModelprovides results in normal or verbose format.See
AWSMachineLearningGetMLModelInput
See
AWSMachineLearningGetMLModelOutput
Declaration
Objective-C
- (void)getMLModel:(nonnull AWSMachineLearningGetMLModelInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningGetMLModelOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func mlModel(_ request: AWSMachineLearningGetMLModelInput) async throws -> AWSMachineLearningGetMLModelOutputParameters
requestA container for the necessary parameters to execute the GetMLModel service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Generates a prediction for the observation using the specified
ML Model.Note Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.
See
AWSMachineLearningPredictInput
See
AWSMachineLearningPredictOutput
Declaration
Objective-C
- (id)predict:(nonnull AWSMachineLearningPredictInput *)request;Swift
func predict(_ request: AWSMachineLearningPredictInput) -> Any!Parameters
requestA container for the necessary parameters to execute the Predict service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningPredictOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorLimitExceeded,AWSMachineLearningErrorInternalServer,AWSMachineLearningErrorPredictorNotMounted. -
Generates a prediction for the observation using the specified
ML Model.Note Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.
See
AWSMachineLearningPredictInput
See
AWSMachineLearningPredictOutput
Declaration
Objective-C
- (void)predict:(nonnull AWSMachineLearningPredictInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningPredictOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func predict(_ request: AWSMachineLearningPredictInput) async throws -> AWSMachineLearningPredictOutputParameters
requestA container for the necessary parameters to execute the Predict service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorLimitExceeded,AWSMachineLearningErrorInternalServer,AWSMachineLearningErrorPredictorNotMounted. -
Updates the
BatchPredictionNameof aBatchPrediction.You can use the
GetBatchPredictionoperation to view the contents of the updated data element.See
AWSMachineLearningUpdateBatchPredictionInput
See
AWSMachineLearningUpdateBatchPredictionOutput
Declaration
Objective-C
- (id)updateBatchPrediction: (nonnull AWSMachineLearningUpdateBatchPredictionInput *)request;Swift
func updateBatchPrediction(_ request: AWSMachineLearningUpdateBatchPredictionInput) -> Any!Parameters
requestA container for the necessary parameters to execute the UpdateBatchPrediction service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningUpdateBatchPredictionOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Updates the
BatchPredictionNameof aBatchPrediction.You can use the
GetBatchPredictionoperation to view the contents of the updated data element.See
AWSMachineLearningUpdateBatchPredictionInput
See
AWSMachineLearningUpdateBatchPredictionOutput
Declaration
Objective-C
- (void)updateBatchPrediction: (nonnull AWSMachineLearningUpdateBatchPredictionInput *)request completionHandler: (void (^_Nullable)( AWSMachineLearningUpdateBatchPredictionOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func updateBatchPrediction(_ request: AWSMachineLearningUpdateBatchPredictionInput) async throws -> AWSMachineLearningUpdateBatchPredictionOutputParameters
requestA container for the necessary parameters to execute the UpdateBatchPrediction service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Updates the
DataSourceNameof aDataSource.You can use the
GetDataSourceoperation to view the contents of the updated data element.See
AWSMachineLearningUpdateDataSourceInput
See
AWSMachineLearningUpdateDataSourceOutput
Declaration
Objective-C
- (id)updateDataSource: (nonnull AWSMachineLearningUpdateDataSourceInput *)request;Swift
func updateDataSource(_ request: AWSMachineLearningUpdateDataSourceInput) -> Any!Parameters
requestA container for the necessary parameters to execute the UpdateDataSource service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningUpdateDataSourceOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Updates the
DataSourceNameof aDataSource.You can use the
GetDataSourceoperation to view the contents of the updated data element.See
AWSMachineLearningUpdateDataSourceInput
See
AWSMachineLearningUpdateDataSourceOutput
Declaration
Objective-C
- (void) updateDataSource:(nonnull AWSMachineLearningUpdateDataSourceInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningUpdateDataSourceOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func updateDataSource(_ request: AWSMachineLearningUpdateDataSourceInput) async throws -> AWSMachineLearningUpdateDataSourceOutputParameters
requestA container for the necessary parameters to execute the UpdateDataSource service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Updates the
EvaluationNameof anEvaluation.You can use the
GetEvaluationoperation to view the contents of the updated data element.See
AWSMachineLearningUpdateEvaluationInput
See
AWSMachineLearningUpdateEvaluationOutput
Declaration
Objective-C
- (id)updateEvaluation: (nonnull AWSMachineLearningUpdateEvaluationInput *)request;Swift
func updateEvaluation(_ request: AWSMachineLearningUpdateEvaluationInput) -> Any!Parameters
requestA container for the necessary parameters to execute the UpdateEvaluation service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningUpdateEvaluationOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Updates the
EvaluationNameof anEvaluation.You can use the
GetEvaluationoperation to view the contents of the updated data element.See
AWSMachineLearningUpdateEvaluationInput
See
AWSMachineLearningUpdateEvaluationOutput
Declaration
Objective-C
- (void) updateEvaluation:(nonnull AWSMachineLearningUpdateEvaluationInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningUpdateEvaluationOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func updateEvaluation(_ request: AWSMachineLearningUpdateEvaluationInput) async throws -> AWSMachineLearningUpdateEvaluationOutputParameters
requestA container for the necessary parameters to execute the UpdateEvaluation service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Updates the
MLModelNameand theScoreThresholdof anMLModel.You can use the
GetMLModeloperation to view the contents of the updated data element.See
AWSMachineLearningUpdateMLModelInput
See
AWSMachineLearningUpdateMLModelOutput
Declaration
Objective-C
- (id)updateMLModel:(nonnull AWSMachineLearningUpdateMLModelInput *)request;Swift
func updateMLModel(_ request: AWSMachineLearningUpdateMLModelInput) -> Any!Parameters
requestA container for the necessary parameters to execute the UpdateMLModel service method.
Return Value
An instance of
AWSTask. On successful execution,task.resultwill contain an instance ofAWSMachineLearningUpdateMLModelOutput. On failed execution,task.errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer. -
Updates the
MLModelNameand theScoreThresholdof anMLModel.You can use the
GetMLModeloperation to view the contents of the updated data element.See
AWSMachineLearningUpdateMLModelInput
See
AWSMachineLearningUpdateMLModelOutput
Declaration
Objective-C
- (void)updateMLModel:(nonnull AWSMachineLearningUpdateMLModelInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningUpdateMLModelOutput *_Nullable, NSError *_Nullable))completionHandler;Swift
func updateMLModel(_ request: AWSMachineLearningUpdateMLModelInput) async throws -> AWSMachineLearningUpdateMLModelOutputParameters
requestA container for the necessary parameters to execute the UpdateMLModel service method.
completionHandlerThe completion handler to call when the load request is complete.
response- A response object, ornilif the request failed.error- An error object that indicates why the request failed, ornilif the request was successful. On failed execution,errormay contain anNSErrorwithAWSMachineLearningErrorDomaindomain and the following error code:AWSMachineLearningErrorInvalidInput,AWSMachineLearningErrorResourceNotFound,AWSMachineLearningErrorInternalServer.
View on GitHub
Install in Dash
AWSMachineLearning Class Reference