AWSMachineLearning
Objective-C
@interface AWSMachineLearning
Swift
class AWSMachineLearning
Definition of the public APIs exposed by Amazon Machine Learning
-
The service configuration used to instantiate this service client.
Warning
Once the client is instantiated, do not modify the configuration object. It may cause unspecified behaviors.Declaration
Objective-C
@property (nonatomic, strong, readonly) AWSServiceConfiguration *configuration
-
Returns the singleton service client. If the singleton object does not exist, the SDK instantiates the default service client with
defaultServiceConfiguration
from[AWSServiceManager defaultServiceManager]
. The reference to this object is maintained by the SDK, and you do not need to retain it manually.For example, set the default service configuration in
- application:didFinishLaunchingWithOptions:
Swift
func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool { let credentialProvider = AWSCognitoCredentialsProvider(regionType: .USEast1, identityPoolId: "YourIdentityPoolId") let configuration = AWSServiceConfiguration(region: .USEast1, credentialsProvider: credentialProvider) AWSServiceManager.default().defaultServiceConfiguration = configuration return true
}
Objective-C
- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions { AWSCognitoCredentialsProvider *credentialsProvider = [[AWSCognitoCredentialsProvider alloc] initWithRegionType:AWSRegionUSEast1 identityPoolId:@"YourIdentityPoolId"]; AWSServiceConfiguration *configuration = [[AWSServiceConfiguration alloc] initWithRegion:AWSRegionUSEast1 credentialsProvider:credentialsProvider]; [AWSServiceManager defaultServiceManager].defaultServiceConfiguration = configuration; return YES; }
Then call the following to get the default service client:
Swift
let MachineLearning = AWSMachineLearning.default()
Objective-C
AWSMachineLearning *MachineLearning = [AWSMachineLearning defaultMachineLearning];
Declaration
Objective-C
+ (nonnull instancetype)defaultMachineLearning;
Swift
class func `default`() -> Self
Return Value
The default service client.
-
Creates a service client with the given service configuration and registers it for the key.
For example, set the default service configuration in
- application:didFinishLaunchingWithOptions:
Swift
func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool { let credentialProvider = AWSCognitoCredentialsProvider(regionType: .USEast1, identityPoolId: "YourIdentityPoolId") let configuration = AWSServiceConfiguration(region: .USWest2, credentialsProvider: credentialProvider) AWSMachineLearning.register(with: configuration!, forKey: "USWest2MachineLearning") return true
}
Objective-C
- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions { AWSCognitoCredentialsProvider *credentialsProvider = [[AWSCognitoCredentialsProvider alloc] initWithRegionType:AWSRegionUSEast1 identityPoolId:@"YourIdentityPoolId"]; AWSServiceConfiguration *configuration = [[AWSServiceConfiguration alloc] initWithRegion:AWSRegionUSWest2 credentialsProvider:credentialsProvider]; [AWSMachineLearning registerMachineLearningWithConfiguration:configuration forKey:@"USWest2MachineLearning"]; return YES; }
Then call the following to get the service client:
Swift
let MachineLearning = AWSMachineLearning(forKey: "USWest2MachineLearning")
Objective-C
AWSMachineLearning *MachineLearning = [AWSMachineLearning MachineLearningForKey:@"USWest2MachineLearning"];
Warning
After calling this method, do not modify the configuration object. It may cause unspecified behaviors.
Declaration
Objective-C
+ (void)registerMachineLearningWithConfiguration:(id)configuration forKey:(nonnull NSString *)key;
Swift
class func register(withConfiguration configuration: Any!, forKey key: String)
Parameters
configuration
A service configuration object.
key
A string to identify the service client.
-
Retrieves the service client associated with the key. You need to call
+ registerMachineLearningWithConfiguration:forKey:
before invoking this method.For example, set the default service configuration in
- application:didFinishLaunchingWithOptions:
Swift
func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool { let credentialProvider = AWSCognitoCredentialsProvider(regionType: .USEast1, identityPoolId: "YourIdentityPoolId") let configuration = AWSServiceConfiguration(region: .USWest2, credentialsProvider: credentialProvider) AWSMachineLearning.register(with: configuration!, forKey: "USWest2MachineLearning") return true
}
Objective-C
- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions { AWSCognitoCredentialsProvider *credentialsProvider = [[AWSCognitoCredentialsProvider alloc] initWithRegionType:AWSRegionUSEast1 identityPoolId:@"YourIdentityPoolId"]; AWSServiceConfiguration *configuration = [[AWSServiceConfiguration alloc] initWithRegion:AWSRegionUSWest2 credentialsProvider:credentialsProvider]; [AWSMachineLearning registerMachineLearningWithConfiguration:configuration forKey:@"USWest2MachineLearning"]; return YES; }
Then call the following to get the service client:
Swift
let MachineLearning = AWSMachineLearning(forKey: "USWest2MachineLearning")
Objective-C
AWSMachineLearning *MachineLearning = [AWSMachineLearning MachineLearningForKey:@"USWest2MachineLearning"];
Declaration
Objective-C
+ (nonnull instancetype)MachineLearningForKey:(nonnull NSString *)key;
Swift
convenience init(forKey key: String)
Parameters
key
A string to identify the service client.
Return Value
An instance of the service client.
-
Removes the service client associated with the key and release it.
Warning
Before calling this method, make sure no method is running on this client.
Declaration
Objective-C
+ (void)removeMachineLearningForKey:(nonnull NSString *)key;
Swift
class func remove(forKey key: String)
Parameters
key
A string to identify the service client.
-
Adds one or more tags to an object, up to a limit of 10. Each tag consists of a key and an optional value. If you add a tag using a key that is already associated with the ML object,
AddTags
updates the tag’s value.See
AWSMachineLearningAddTagsInput
See
AWSMachineLearningAddTagsOutput
Declaration
Objective-C
- (id)addTags:(nonnull AWSMachineLearningAddTagsInput *)request;
Swift
func addTags(_ request: AWSMachineLearningAddTagsInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the AddTags service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningAddTagsOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInvalidTag
,AWSMachineLearningErrorTagLimitExceeded
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Adds one or more tags to an object, up to a limit of 10. Each tag consists of a key and an optional value. If you add a tag using a key that is already associated with the ML object,
AddTags
updates the tag’s value.See
AWSMachineLearningAddTagsInput
See
AWSMachineLearningAddTagsOutput
Declaration
Objective-C
- (void)addTags:(nonnull AWSMachineLearningAddTagsInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningAddTagsOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func addTags(_ request: AWSMachineLearningAddTagsInput) async throws -> AWSMachineLearningAddTagsOutput
Parameters
request
A container for the necessary parameters to execute the AddTags service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInvalidTag
,AWSMachineLearningErrorTagLimitExceeded
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Generates predictions for a group of observations. The observations to process exist in one or more data files referenced by a
DataSource
. This operation creates a newBatchPrediction
, and uses anMLModel
and the data files referenced by theDataSource
as information sources.CreateBatchPrediction
is an asynchronous operation. In response toCreateBatchPrediction
, Amazon Machine Learning (Amazon ML) immediately returns and sets theBatchPrediction
status toPENDING
. After theBatchPrediction
completes, Amazon ML sets the status toCOMPLETED
.You can poll for status updates by using the GetBatchPrediction operation and checking the
Status
parameter of the result. After theCOMPLETED
status appears, the results are available in the location specified by theOutputUri
parameter.See
AWSMachineLearningCreateBatchPredictionInput
See
AWSMachineLearningCreateBatchPredictionOutput
Declaration
Objective-C
- (id)createBatchPrediction: (nonnull AWSMachineLearningCreateBatchPredictionInput *)request;
Swift
func createBatchPrediction(_ request: AWSMachineLearningCreateBatchPredictionInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the CreateBatchPrediction service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningCreateBatchPredictionOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInternalServer
,AWSMachineLearningErrorIdempotentParameterMismatch
. -
Generates predictions for a group of observations. The observations to process exist in one or more data files referenced by a
DataSource
. This operation creates a newBatchPrediction
, and uses anMLModel
and the data files referenced by theDataSource
as information sources.CreateBatchPrediction
is an asynchronous operation. In response toCreateBatchPrediction
, Amazon Machine Learning (Amazon ML) immediately returns and sets theBatchPrediction
status toPENDING
. After theBatchPrediction
completes, Amazon ML sets the status toCOMPLETED
.You can poll for status updates by using the GetBatchPrediction operation and checking the
Status
parameter of the result. After theCOMPLETED
status appears, the results are available in the location specified by theOutputUri
parameter.See
AWSMachineLearningCreateBatchPredictionInput
See
AWSMachineLearningCreateBatchPredictionOutput
Declaration
Objective-C
- (void)createBatchPrediction: (nonnull AWSMachineLearningCreateBatchPredictionInput *)request completionHandler: (void (^_Nullable)( AWSMachineLearningCreateBatchPredictionOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func createBatchPrediction(_ request: AWSMachineLearningCreateBatchPredictionInput) async throws -> AWSMachineLearningCreateBatchPredictionOutput
Parameters
request
A container for the necessary parameters to execute the CreateBatchPrediction service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInternalServer
,AWSMachineLearningErrorIdempotentParameterMismatch
. -
Creates a
DataSource
object from an Amazon Relational Database Service (Amazon RDS). ADataSource
references data that can be used to performCreateMLModel
,CreateEvaluation
, orCreateBatchPrediction
operations.CreateDataSourceFromRDS
is an asynchronous operation. In response toCreateDataSourceFromRDS
, Amazon Machine Learning (Amazon ML) immediately returns and sets theDataSource
status toPENDING
. After theDataSource
is created and ready for use, Amazon ML sets theStatus
parameter toCOMPLETED
.DataSource
in theCOMPLETED
orPENDING
state can be used only to perform>CreateMLModel
>,CreateEvaluation
, orCreateBatchPrediction
operations.If Amazon ML cannot accept the input source, it sets the
Status
parameter toFAILED
and includes an error message in theMessage
attribute of theGetDataSource
operation response.See
AWSMachineLearningCreateDataSourceFromRDSInput
See
AWSMachineLearningCreateDataSourceFromRDSOutput
Declaration
Objective-C
- (id)createDataSourceFromRDS: (nonnull AWSMachineLearningCreateDataSourceFromRDSInput *)request;
Swift
func createDataSource(fromRDS request: AWSMachineLearningCreateDataSourceFromRDSInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the CreateDataSourceFromRDS service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningCreateDataSourceFromRDSOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInternalServer
,AWSMachineLearningErrorIdempotentParameterMismatch
. -
Creates a
DataSource
object from an Amazon Relational Database Service (Amazon RDS). ADataSource
references data that can be used to performCreateMLModel
,CreateEvaluation
, orCreateBatchPrediction
operations.CreateDataSourceFromRDS
is an asynchronous operation. In response toCreateDataSourceFromRDS
, Amazon Machine Learning (Amazon ML) immediately returns and sets theDataSource
status toPENDING
. After theDataSource
is created and ready for use, Amazon ML sets theStatus
parameter toCOMPLETED
.DataSource
in theCOMPLETED
orPENDING
state can be used only to perform>CreateMLModel
>,CreateEvaluation
, orCreateBatchPrediction
operations.If Amazon ML cannot accept the input source, it sets the
Status
parameter toFAILED
and includes an error message in theMessage
attribute of theGetDataSource
operation response.See
AWSMachineLearningCreateDataSourceFromRDSInput
See
AWSMachineLearningCreateDataSourceFromRDSOutput
Declaration
Objective-C
- (void) createDataSourceFromRDS: (nonnull AWSMachineLearningCreateDataSourceFromRDSInput *)request completionHandler: (void (^_Nullable)( AWSMachineLearningCreateDataSourceFromRDSOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func createDataSource(fromRDS request: AWSMachineLearningCreateDataSourceFromRDSInput) async throws -> AWSMachineLearningCreateDataSourceFromRDSOutput
Parameters
request
A container for the necessary parameters to execute the CreateDataSourceFromRDS service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInternalServer
,AWSMachineLearningErrorIdempotentParameterMismatch
. -
Creates a
DataSource
from a database hosted on an Amazon Redshift cluster. ADataSource
references data that can be used to perform eitherCreateMLModel
,CreateEvaluation
, orCreateBatchPrediction
operations.CreateDataSourceFromRedshift
is an asynchronous operation. In response toCreateDataSourceFromRedshift
, Amazon Machine Learning (Amazon ML) immediately returns and sets theDataSource
status toPENDING
. After theDataSource
is created and ready for use, Amazon ML sets theStatus
parameter toCOMPLETED
.DataSource
inCOMPLETED
orPENDING
states can be used to perform onlyCreateMLModel
,CreateEvaluation
, orCreateBatchPrediction
operations.If Amazon ML can’t accept the input source, it sets the
Status
parameter toFAILED
and includes an error message in theMessage
attribute of theGetDataSource
operation response.The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified by a
SelectSqlQuery
query. Amazon ML executes anUnload
command in Amazon Redshift to transfer the result set of theSelectSqlQuery
query toS3StagingLocation
.After the
<?oxy_insert_start author=“laurama” timestamp=“20160406T153842-0700”>DataSource
has been created, it’s ready for use in evaluations and batch predictions. If you plan to use theDataSource
to train anMLModel
, theDataSource
also requires a recipe. A recipe describes how each input variable will be used in training anMLModel
. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.You can’t change an existing datasource, but you can copy and modify the settings from an existing Amazon Redshift datasource to create a new datasource. To do so, call
<?oxy_insert_end>GetDataSource
for an existing datasource and copy the values to aCreateDataSource
call. Change the settings that you want to change and make sure that all required fields have the appropriate values.See
AWSMachineLearningCreateDataSourceFromRedshiftInput
See
AWSMachineLearningCreateDataSourceFromRedshiftOutput
Declaration
Objective-C
- (id)createDataSourceFromRedshift: (nonnull AWSMachineLearningCreateDataSourceFromRedshiftInput *)request;
Swift
func createDataSource(fromRedshift request: AWSMachineLearningCreateDataSourceFromRedshiftInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the CreateDataSourceFromRedshift service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningCreateDataSourceFromRedshiftOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInternalServer
,AWSMachineLearningErrorIdempotentParameterMismatch
. -
Creates a
DataSource
from a database hosted on an Amazon Redshift cluster. ADataSource
references data that can be used to perform eitherCreateMLModel
,CreateEvaluation
, orCreateBatchPrediction
operations.CreateDataSourceFromRedshift
is an asynchronous operation. In response toCreateDataSourceFromRedshift
, Amazon Machine Learning (Amazon ML) immediately returns and sets theDataSource
status toPENDING
. After theDataSource
is created and ready for use, Amazon ML sets theStatus
parameter toCOMPLETED
.DataSource
inCOMPLETED
orPENDING
states can be used to perform onlyCreateMLModel
,CreateEvaluation
, orCreateBatchPrediction
operations.If Amazon ML can’t accept the input source, it sets the
Status
parameter toFAILED
and includes an error message in theMessage
attribute of theGetDataSource
operation response.The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified by a
SelectSqlQuery
query. Amazon ML executes anUnload
command in Amazon Redshift to transfer the result set of theSelectSqlQuery
query toS3StagingLocation
.After the
<?oxy_insert_start author=“laurama” timestamp=“20160406T153842-0700”>DataSource
has been created, it’s ready for use in evaluations and batch predictions. If you plan to use theDataSource
to train anMLModel
, theDataSource
also requires a recipe. A recipe describes how each input variable will be used in training anMLModel
. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.You can’t change an existing datasource, but you can copy and modify the settings from an existing Amazon Redshift datasource to create a new datasource. To do so, call
<?oxy_insert_end>GetDataSource
for an existing datasource and copy the values to aCreateDataSource
call. Change the settings that you want to change and make sure that all required fields have the appropriate values.See
AWSMachineLearningCreateDataSourceFromRedshiftInput
See
AWSMachineLearningCreateDataSourceFromRedshiftOutput
Declaration
Objective-C
- (void)createDataSourceFromRedshift: (nonnull AWSMachineLearningCreateDataSourceFromRedshiftInput *) request completionHandler: (void (^_Nullable)( AWSMachineLearningCreateDataSourceFromRedshiftOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func createDataSource(fromRedshift request: AWSMachineLearningCreateDataSourceFromRedshiftInput) async throws -> AWSMachineLearningCreateDataSourceFromRedshiftOutput
Parameters
request
A container for the necessary parameters to execute the CreateDataSourceFromRedshift service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInternalServer
,AWSMachineLearningErrorIdempotentParameterMismatch
. -
Creates a
DataSource
object. ADataSource
references data that can be used to performCreateMLModel
,CreateEvaluation
, orCreateBatchPrediction
operations.CreateDataSourceFromS3
is an asynchronous operation. In response toCreateDataSourceFromS3
, Amazon Machine Learning (Amazon ML) immediately returns and sets theDataSource
status toPENDING
. After theDataSource
has been created and is ready for use, Amazon ML sets theStatus
parameter toCOMPLETED
.DataSource
in theCOMPLETED
orPENDING
state can be used to perform onlyCreateMLModel
,CreateEvaluation
orCreateBatchPrediction
operations.If Amazon ML can’t accept the input source, it sets the
Status
parameter toFAILED
and includes an error message in theMessage
attribute of theGetDataSource
operation response.The observation data used in a
DataSource
should be ready to use; that is, it should have a consistent structure, and missing data values should be kept to a minimum. The observation data must reside in one or more .csv files in an Amazon Simple Storage Service (Amazon S3) location, along with a schema that describes the data items by name and type. The same schema must be used for all of the data files referenced by theDataSource
.After the
DataSource
has been created, it’s ready to use in evaluations and batch predictions. If you plan to use theDataSource
to train anMLModel
, theDataSource
also needs a recipe. A recipe describes how each input variable will be used in training anMLModel
. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.See
AWSMachineLearningCreateDataSourceFromS3Input
See
AWSMachineLearningCreateDataSourceFromS3Output
Declaration
Objective-C
- (id)createDataSourceFromS3: (nonnull AWSMachineLearningCreateDataSourceFromS3Input *)request;
Swift
func createDataSource(fromS3 request: AWSMachineLearningCreateDataSourceFromS3Input) -> Any!
Parameters
request
A container for the necessary parameters to execute the CreateDataSourceFromS3 service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningCreateDataSourceFromS3Output
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInternalServer
,AWSMachineLearningErrorIdempotentParameterMismatch
. -
Creates a
DataSource
object. ADataSource
references data that can be used to performCreateMLModel
,CreateEvaluation
, orCreateBatchPrediction
operations.CreateDataSourceFromS3
is an asynchronous operation. In response toCreateDataSourceFromS3
, Amazon Machine Learning (Amazon ML) immediately returns and sets theDataSource
status toPENDING
. After theDataSource
has been created and is ready for use, Amazon ML sets theStatus
parameter toCOMPLETED
.DataSource
in theCOMPLETED
orPENDING
state can be used to perform onlyCreateMLModel
,CreateEvaluation
orCreateBatchPrediction
operations.If Amazon ML can’t accept the input source, it sets the
Status
parameter toFAILED
and includes an error message in theMessage
attribute of theGetDataSource
operation response.The observation data used in a
DataSource
should be ready to use; that is, it should have a consistent structure, and missing data values should be kept to a minimum. The observation data must reside in one or more .csv files in an Amazon Simple Storage Service (Amazon S3) location, along with a schema that describes the data items by name and type. The same schema must be used for all of the data files referenced by theDataSource
.After the
DataSource
has been created, it’s ready to use in evaluations and batch predictions. If you plan to use theDataSource
to train anMLModel
, theDataSource
also needs a recipe. A recipe describes how each input variable will be used in training anMLModel
. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.See
AWSMachineLearningCreateDataSourceFromS3Input
See
AWSMachineLearningCreateDataSourceFromS3Output
Declaration
Objective-C
- (void)createDataSourceFromS3: (nonnull AWSMachineLearningCreateDataSourceFromS3Input *)request completionHandler: (void (^_Nullable)( AWSMachineLearningCreateDataSourceFromS3Output *_Nullable, NSError *_Nullable))completionHandler;
Swift
func createDataSource(fromS3 request: AWSMachineLearningCreateDataSourceFromS3Input) async throws -> AWSMachineLearningCreateDataSourceFromS3Output
Parameters
request
A container for the necessary parameters to execute the CreateDataSourceFromS3 service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInternalServer
,AWSMachineLearningErrorIdempotentParameterMismatch
. -
Creates a new
Evaluation
of anMLModel
. AnMLModel
is evaluated on a set of observations associated to aDataSource
. Like aDataSource
for anMLModel
, theDataSource
for anEvaluation
contains values for theTarget Variable
. TheEvaluation
compares the predicted result for each observation to the actual outcome and provides a summary so that you know how effective theMLModel
functions on the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the correspondingMLModelType
:BINARY
,REGRESSION
orMULTICLASS
.CreateEvaluation
is an asynchronous operation. In response toCreateEvaluation
, Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status toPENDING
. After theEvaluation
is created and ready for use, Amazon ML sets the status toCOMPLETED
.You can use the
GetEvaluation
operation to check progress of the evaluation during the creation operation.See
AWSMachineLearningCreateEvaluationInput
See
AWSMachineLearningCreateEvaluationOutput
Declaration
Objective-C
- (id)createEvaluation: (nonnull AWSMachineLearningCreateEvaluationInput *)request;
Swift
func createEvaluation(_ request: AWSMachineLearningCreateEvaluationInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the CreateEvaluation service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningCreateEvaluationOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInternalServer
,AWSMachineLearningErrorIdempotentParameterMismatch
. -
Creates a new
Evaluation
of anMLModel
. AnMLModel
is evaluated on a set of observations associated to aDataSource
. Like aDataSource
for anMLModel
, theDataSource
for anEvaluation
contains values for theTarget Variable
. TheEvaluation
compares the predicted result for each observation to the actual outcome and provides a summary so that you know how effective theMLModel
functions on the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the correspondingMLModelType
:BINARY
,REGRESSION
orMULTICLASS
.CreateEvaluation
is an asynchronous operation. In response toCreateEvaluation
, Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status toPENDING
. After theEvaluation
is created and ready for use, Amazon ML sets the status toCOMPLETED
.You can use the
GetEvaluation
operation to check progress of the evaluation during the creation operation.See
AWSMachineLearningCreateEvaluationInput
See
AWSMachineLearningCreateEvaluationOutput
Declaration
Objective-C
- (void) createEvaluation:(nonnull AWSMachineLearningCreateEvaluationInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningCreateEvaluationOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func createEvaluation(_ request: AWSMachineLearningCreateEvaluationInput) async throws -> AWSMachineLearningCreateEvaluationOutput
Parameters
request
A container for the necessary parameters to execute the CreateEvaluation service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInternalServer
,AWSMachineLearningErrorIdempotentParameterMismatch
. -
Creates a new
MLModel
using theDataSource
and the recipe as information sources.An
MLModel
is nearly immutable. Users can update only theMLModelName
and theScoreThreshold
in anMLModel
without creating a newMLModel
.CreateMLModel
is an asynchronous operation. In response toCreateMLModel
, Amazon Machine Learning (Amazon ML) immediately returns and sets theMLModel
status toPENDING
. After theMLModel
has been created and ready is for use, Amazon ML sets the status toCOMPLETED
.You can use the
GetMLModel
operation to check the progress of theMLModel
during the creation operation.CreateMLModel
requires aDataSource
with computed statistics, which can be created by settingComputeStatistics
totrue
inCreateDataSourceFromRDS
,CreateDataSourceFromS3
, orCreateDataSourceFromRedshift
operations.See
AWSMachineLearningCreateMLModelInput
See
AWSMachineLearningCreateMLModelOutput
Declaration
Objective-C
- (id)createMLModel:(nonnull AWSMachineLearningCreateMLModelInput *)request;
Swift
func createMLModel(_ request: AWSMachineLearningCreateMLModelInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the CreateMLModel service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningCreateMLModelOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInternalServer
,AWSMachineLearningErrorIdempotentParameterMismatch
. -
Creates a new
MLModel
using theDataSource
and the recipe as information sources.An
MLModel
is nearly immutable. Users can update only theMLModelName
and theScoreThreshold
in anMLModel
without creating a newMLModel
.CreateMLModel
is an asynchronous operation. In response toCreateMLModel
, Amazon Machine Learning (Amazon ML) immediately returns and sets theMLModel
status toPENDING
. After theMLModel
has been created and ready is for use, Amazon ML sets the status toCOMPLETED
.You can use the
GetMLModel
operation to check the progress of theMLModel
during the creation operation.CreateMLModel
requires aDataSource
with computed statistics, which can be created by settingComputeStatistics
totrue
inCreateDataSourceFromRDS
,CreateDataSourceFromS3
, orCreateDataSourceFromRedshift
operations.See
AWSMachineLearningCreateMLModelInput
See
AWSMachineLearningCreateMLModelOutput
Declaration
Objective-C
- (void)createMLModel:(nonnull AWSMachineLearningCreateMLModelInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningCreateMLModelOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func createMLModel(_ request: AWSMachineLearningCreateMLModelInput) async throws -> AWSMachineLearningCreateMLModelOutput
Parameters
request
A container for the necessary parameters to execute the CreateMLModel service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInternalServer
,AWSMachineLearningErrorIdempotentParameterMismatch
. -
Creates a real-time endpoint for the
MLModel
. The endpoint contains the URI of theMLModel
; that is, the location to send real-time prediction requests for the specifiedMLModel
.See
AWSMachineLearningCreateRealtimeEndpointInput
See
AWSMachineLearningCreateRealtimeEndpointOutput
Declaration
Objective-C
- (id)createRealtimeEndpoint: (nonnull AWSMachineLearningCreateRealtimeEndpointInput *)request;
Swift
func createRealtimeEndpoint(_ request: AWSMachineLearningCreateRealtimeEndpointInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the CreateRealtimeEndpoint service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningCreateRealtimeEndpointOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Creates a real-time endpoint for the
MLModel
. The endpoint contains the URI of theMLModel
; that is, the location to send real-time prediction requests for the specifiedMLModel
.See
AWSMachineLearningCreateRealtimeEndpointInput
See
AWSMachineLearningCreateRealtimeEndpointOutput
Declaration
Objective-C
- (void)createRealtimeEndpoint: (nonnull AWSMachineLearningCreateRealtimeEndpointInput *)request completionHandler: (void (^_Nullable)( AWSMachineLearningCreateRealtimeEndpointOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func createRealtimeEndpoint(_ request: AWSMachineLearningCreateRealtimeEndpointInput) async throws -> AWSMachineLearningCreateRealtimeEndpointOutput
Parameters
request
A container for the necessary parameters to execute the CreateRealtimeEndpoint service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Assigns the DELETED status to a
BatchPrediction
, rendering it unusable.After using the
DeleteBatchPrediction
operation, you can use the GetBatchPrediction operation to verify that the status of theBatchPrediction
changed to DELETED.Caution: The result of the
DeleteBatchPrediction
operation is irreversible.See
AWSMachineLearningDeleteBatchPredictionInput
See
AWSMachineLearningDeleteBatchPredictionOutput
Declaration
Objective-C
- (id)deleteBatchPrediction: (nonnull AWSMachineLearningDeleteBatchPredictionInput *)request;
Swift
func deleteBatchPrediction(_ request: AWSMachineLearningDeleteBatchPredictionInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the DeleteBatchPrediction service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningDeleteBatchPredictionOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Assigns the DELETED status to a
BatchPrediction
, rendering it unusable.After using the
DeleteBatchPrediction
operation, you can use the GetBatchPrediction operation to verify that the status of theBatchPrediction
changed to DELETED.Caution: The result of the
DeleteBatchPrediction
operation is irreversible.See
AWSMachineLearningDeleteBatchPredictionInput
See
AWSMachineLearningDeleteBatchPredictionOutput
Declaration
Objective-C
- (void)deleteBatchPrediction: (nonnull AWSMachineLearningDeleteBatchPredictionInput *)request completionHandler: (void (^_Nullable)( AWSMachineLearningDeleteBatchPredictionOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func deleteBatchPrediction(_ request: AWSMachineLearningDeleteBatchPredictionInput) async throws -> AWSMachineLearningDeleteBatchPredictionOutput
Parameters
request
A container for the necessary parameters to execute the DeleteBatchPrediction service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Assigns the DELETED status to a
DataSource
, rendering it unusable.After using the
DeleteDataSource
operation, you can use the GetDataSource operation to verify that the status of theDataSource
changed to DELETED.Caution: The results of the
DeleteDataSource
operation are irreversible.See
AWSMachineLearningDeleteDataSourceInput
See
AWSMachineLearningDeleteDataSourceOutput
Declaration
Objective-C
- (id)deleteDataSource: (nonnull AWSMachineLearningDeleteDataSourceInput *)request;
Swift
func deleteDataSource(_ request: AWSMachineLearningDeleteDataSourceInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the DeleteDataSource service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningDeleteDataSourceOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Assigns the DELETED status to a
DataSource
, rendering it unusable.After using the
DeleteDataSource
operation, you can use the GetDataSource operation to verify that the status of theDataSource
changed to DELETED.Caution: The results of the
DeleteDataSource
operation are irreversible.See
AWSMachineLearningDeleteDataSourceInput
See
AWSMachineLearningDeleteDataSourceOutput
Declaration
Objective-C
- (void) deleteDataSource:(nonnull AWSMachineLearningDeleteDataSourceInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningDeleteDataSourceOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func deleteDataSource(_ request: AWSMachineLearningDeleteDataSourceInput) async throws -> AWSMachineLearningDeleteDataSourceOutput
Parameters
request
A container for the necessary parameters to execute the DeleteDataSource service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Assigns the
DELETED
status to anEvaluation
, rendering it unusable.After invoking the
DeleteEvaluation
operation, you can use theGetEvaluation
operation to verify that the status of theEvaluation
changed toDELETED
.Caution The results of the
DeleteEvaluation
operation are irreversible.See
AWSMachineLearningDeleteEvaluationInput
See
AWSMachineLearningDeleteEvaluationOutput
Declaration
Objective-C
- (id)deleteEvaluation: (nonnull AWSMachineLearningDeleteEvaluationInput *)request;
Swift
func deleteEvaluation(_ request: AWSMachineLearningDeleteEvaluationInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the DeleteEvaluation service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningDeleteEvaluationOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Assigns the
DELETED
status to anEvaluation
, rendering it unusable.After invoking the
DeleteEvaluation
operation, you can use theGetEvaluation
operation to verify that the status of theEvaluation
changed toDELETED
.Caution The results of the
DeleteEvaluation
operation are irreversible.See
AWSMachineLearningDeleteEvaluationInput
See
AWSMachineLearningDeleteEvaluationOutput
Declaration
Objective-C
- (void) deleteEvaluation:(nonnull AWSMachineLearningDeleteEvaluationInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningDeleteEvaluationOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func deleteEvaluation(_ request: AWSMachineLearningDeleteEvaluationInput) async throws -> AWSMachineLearningDeleteEvaluationOutput
Parameters
request
A container for the necessary parameters to execute the DeleteEvaluation service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Assigns the
DELETED
status to anMLModel
, rendering it unusable.After using the
DeleteMLModel
operation, you can use theGetMLModel
operation to verify that the status of theMLModel
changed to DELETED.Caution: The result of the
DeleteMLModel
operation is irreversible.See
AWSMachineLearningDeleteMLModelInput
See
AWSMachineLearningDeleteMLModelOutput
Declaration
Objective-C
- (id)deleteMLModel:(nonnull AWSMachineLearningDeleteMLModelInput *)request;
Swift
func deleteMLModel(_ request: AWSMachineLearningDeleteMLModelInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the DeleteMLModel service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningDeleteMLModelOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Assigns the
DELETED
status to anMLModel
, rendering it unusable.After using the
DeleteMLModel
operation, you can use theGetMLModel
operation to verify that the status of theMLModel
changed to DELETED.Caution: The result of the
DeleteMLModel
operation is irreversible.See
AWSMachineLearningDeleteMLModelInput
See
AWSMachineLearningDeleteMLModelOutput
Declaration
Objective-C
- (void)deleteMLModel:(nonnull AWSMachineLearningDeleteMLModelInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningDeleteMLModelOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func deleteMLModel(_ request: AWSMachineLearningDeleteMLModelInput) async throws -> AWSMachineLearningDeleteMLModelOutput
Parameters
request
A container for the necessary parameters to execute the DeleteMLModel service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Deletes a real time endpoint of an
MLModel
.See
AWSMachineLearningDeleteRealtimeEndpointInput
See
AWSMachineLearningDeleteRealtimeEndpointOutput
Declaration
Objective-C
- (id)deleteRealtimeEndpoint: (nonnull AWSMachineLearningDeleteRealtimeEndpointInput *)request;
Swift
func deleteRealtimeEndpoint(_ request: AWSMachineLearningDeleteRealtimeEndpointInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the DeleteRealtimeEndpoint service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningDeleteRealtimeEndpointOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Deletes a real time endpoint of an
MLModel
.See
AWSMachineLearningDeleteRealtimeEndpointInput
See
AWSMachineLearningDeleteRealtimeEndpointOutput
Declaration
Objective-C
- (void)deleteRealtimeEndpoint: (nonnull AWSMachineLearningDeleteRealtimeEndpointInput *)request completionHandler: (void (^_Nullable)( AWSMachineLearningDeleteRealtimeEndpointOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func deleteRealtimeEndpoint(_ request: AWSMachineLearningDeleteRealtimeEndpointInput) async throws -> AWSMachineLearningDeleteRealtimeEndpointOutput
Parameters
request
A container for the necessary parameters to execute the DeleteRealtimeEndpoint service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Deletes the specified tags associated with an ML object. After this operation is complete, you can’t recover deleted tags.
If you specify a tag that doesn’t exist, Amazon ML ignores it.
See
AWSMachineLearningDeleteTagsInput
See
AWSMachineLearningDeleteTagsOutput
Declaration
Objective-C
- (id)deleteTags:(nonnull AWSMachineLearningDeleteTagsInput *)request;
Swift
func deleteTags(_ request: AWSMachineLearningDeleteTagsInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the DeleteTags service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningDeleteTagsOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInvalidTag
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Deletes the specified tags associated with an ML object. After this operation is complete, you can’t recover deleted tags.
If you specify a tag that doesn’t exist, Amazon ML ignores it.
See
AWSMachineLearningDeleteTagsInput
See
AWSMachineLearningDeleteTagsOutput
Declaration
Objective-C
- (void)deleteTags:(nonnull AWSMachineLearningDeleteTagsInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningDeleteTagsOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func deleteTags(_ request: AWSMachineLearningDeleteTagsInput) async throws -> AWSMachineLearningDeleteTagsOutput
Parameters
request
A container for the necessary parameters to execute the DeleteTags service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInvalidTag
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Returns a list of
BatchPrediction
operations that match the search criteria in the request.See
AWSMachineLearningDescribeBatchPredictionsInput
See
AWSMachineLearningDescribeBatchPredictionsOutput
Declaration
Objective-C
- (id)describeBatchPredictions: (nonnull AWSMachineLearningDescribeBatchPredictionsInput *)request;
Swift
func describeBatchPredictions(_ request: AWSMachineLearningDescribeBatchPredictionsInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the DescribeBatchPredictions service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningDescribeBatchPredictionsOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInternalServer
. -
Returns a list of
BatchPrediction
operations that match the search criteria in the request.See
AWSMachineLearningDescribeBatchPredictionsInput
See
AWSMachineLearningDescribeBatchPredictionsOutput
Declaration
Objective-C
- (void) describeBatchPredictions: (nonnull AWSMachineLearningDescribeBatchPredictionsInput *)request completionHandler: (void (^_Nullable)( AWSMachineLearningDescribeBatchPredictionsOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func describeBatchPredictions(_ request: AWSMachineLearningDescribeBatchPredictionsInput) async throws -> AWSMachineLearningDescribeBatchPredictionsOutput
Parameters
request
A container for the necessary parameters to execute the DescribeBatchPredictions service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInternalServer
. -
Returns a list of
DataSource
that match the search criteria in the request.See
AWSMachineLearningDescribeDataSourcesInput
See
AWSMachineLearningDescribeDataSourcesOutput
Declaration
Objective-C
- (id)describeDataSources: (nonnull AWSMachineLearningDescribeDataSourcesInput *)request;
Swift
func describeDataSources(_ request: AWSMachineLearningDescribeDataSourcesInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the DescribeDataSources service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningDescribeDataSourcesOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInternalServer
. -
Returns a list of
DataSource
that match the search criteria in the request.See
AWSMachineLearningDescribeDataSourcesInput
See
AWSMachineLearningDescribeDataSourcesOutput
Declaration
Objective-C
- (void)describeDataSources: (nonnull AWSMachineLearningDescribeDataSourcesInput *)request completionHandler: (void (^_Nullable)( AWSMachineLearningDescribeDataSourcesOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func describeDataSources(_ request: AWSMachineLearningDescribeDataSourcesInput) async throws -> AWSMachineLearningDescribeDataSourcesOutput
Parameters
request
A container for the necessary parameters to execute the DescribeDataSources service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInternalServer
. -
Returns a list of
DescribeEvaluations
that match the search criteria in the request.See
AWSMachineLearningDescribeEvaluationsInput
See
AWSMachineLearningDescribeEvaluationsOutput
Declaration
Objective-C
- (id)describeEvaluations: (nonnull AWSMachineLearningDescribeEvaluationsInput *)request;
Swift
func describeEvaluations(_ request: AWSMachineLearningDescribeEvaluationsInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the DescribeEvaluations service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningDescribeEvaluationsOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInternalServer
. -
Returns a list of
DescribeEvaluations
that match the search criteria in the request.See
AWSMachineLearningDescribeEvaluationsInput
See
AWSMachineLearningDescribeEvaluationsOutput
Declaration
Objective-C
- (void)describeEvaluations: (nonnull AWSMachineLearningDescribeEvaluationsInput *)request completionHandler: (void (^_Nullable)( AWSMachineLearningDescribeEvaluationsOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func describeEvaluations(_ request: AWSMachineLearningDescribeEvaluationsInput) async throws -> AWSMachineLearningDescribeEvaluationsOutput
Parameters
request
A container for the necessary parameters to execute the DescribeEvaluations service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInternalServer
. -
Returns a list of
MLModel
that match the search criteria in the request.See
AWSMachineLearningDescribeMLModelsInput
See
AWSMachineLearningDescribeMLModelsOutput
Declaration
Objective-C
- (id)describeMLModels: (nonnull AWSMachineLearningDescribeMLModelsInput *)request;
Swift
func describeMLModels(_ request: AWSMachineLearningDescribeMLModelsInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the DescribeMLModels service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningDescribeMLModelsOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInternalServer
. -
Returns a list of
MLModel
that match the search criteria in the request.See
AWSMachineLearningDescribeMLModelsInput
See
AWSMachineLearningDescribeMLModelsOutput
Declaration
Objective-C
- (void) describeMLModels:(nonnull AWSMachineLearningDescribeMLModelsInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningDescribeMLModelsOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func describeMLModels(_ request: AWSMachineLearningDescribeMLModelsInput) async throws -> AWSMachineLearningDescribeMLModelsOutput
Parameters
request
A container for the necessary parameters to execute the DescribeMLModels service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorInternalServer
. -
Describes one or more of the tags for your Amazon ML object.
See
AWSMachineLearningDescribeTagsInput
See
AWSMachineLearningDescribeTagsOutput
Declaration
Objective-C
- (id)describeTags:(nonnull AWSMachineLearningDescribeTagsInput *)request;
Swift
func describeTags(_ request: AWSMachineLearningDescribeTagsInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the DescribeTags service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningDescribeTagsOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Describes one or more of the tags for your Amazon ML object.
See
AWSMachineLearningDescribeTagsInput
See
AWSMachineLearningDescribeTagsOutput
Declaration
Objective-C
- (void)describeTags:(nonnull AWSMachineLearningDescribeTagsInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningDescribeTagsOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func describeTags(_ request: AWSMachineLearningDescribeTagsInput) async throws -> AWSMachineLearningDescribeTagsOutput
Parameters
request
A container for the necessary parameters to execute the DescribeTags service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Returns a
BatchPrediction
that includes detailed metadata, status, and data file information for aBatch Prediction
request.See
AWSMachineLearningGetBatchPredictionInput
See
AWSMachineLearningGetBatchPredictionOutput
Declaration
Objective-C
- (id)getBatchPrediction: (nonnull AWSMachineLearningGetBatchPredictionInput *)request;
Swift
func getBatchPrediction(_ request: AWSMachineLearningGetBatchPredictionInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the GetBatchPrediction service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningGetBatchPredictionOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Returns a
BatchPrediction
that includes detailed metadata, status, and data file information for aBatch Prediction
request.See
AWSMachineLearningGetBatchPredictionInput
See
AWSMachineLearningGetBatchPredictionOutput
Declaration
Objective-C
- (void)getBatchPrediction: (nonnull AWSMachineLearningGetBatchPredictionInput *)request completionHandler: (void (^_Nullable)( AWSMachineLearningGetBatchPredictionOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func batchPrediction(_ request: AWSMachineLearningGetBatchPredictionInput) async throws -> AWSMachineLearningGetBatchPredictionOutput
Parameters
request
A container for the necessary parameters to execute the GetBatchPrediction service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Returns a
DataSource
that includes metadata and data file information, as well as the current status of theDataSource
.GetDataSource
provides results in normal or verbose format. The verbose format adds the schema description and the list of files pointed to by the DataSource to the normal format.See
AWSMachineLearningGetDataSourceInput
See
AWSMachineLearningGetDataSourceOutput
Declaration
Objective-C
- (id)getDataSource:(nonnull AWSMachineLearningGetDataSourceInput *)request;
Swift
func getDataSource(_ request: AWSMachineLearningGetDataSourceInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the GetDataSource service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningGetDataSourceOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Returns a
DataSource
that includes metadata and data file information, as well as the current status of theDataSource
.GetDataSource
provides results in normal or verbose format. The verbose format adds the schema description and the list of files pointed to by the DataSource to the normal format.See
AWSMachineLearningGetDataSourceInput
See
AWSMachineLearningGetDataSourceOutput
Declaration
Objective-C
- (void)getDataSource:(nonnull AWSMachineLearningGetDataSourceInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningGetDataSourceOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func dataSource(_ request: AWSMachineLearningGetDataSourceInput) async throws -> AWSMachineLearningGetDataSourceOutput
Parameters
request
A container for the necessary parameters to execute the GetDataSource service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Returns an
Evaluation
that includes metadata as well as the current status of theEvaluation
.See
AWSMachineLearningGetEvaluationInput
See
AWSMachineLearningGetEvaluationOutput
Declaration
Objective-C
- (id)getEvaluation:(nonnull AWSMachineLearningGetEvaluationInput *)request;
Swift
func getEvaluation(_ request: AWSMachineLearningGetEvaluationInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the GetEvaluation service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningGetEvaluationOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Returns an
Evaluation
that includes metadata as well as the current status of theEvaluation
.See
AWSMachineLearningGetEvaluationInput
See
AWSMachineLearningGetEvaluationOutput
Declaration
Objective-C
- (void)getEvaluation:(nonnull AWSMachineLearningGetEvaluationInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningGetEvaluationOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func evaluation(_ request: AWSMachineLearningGetEvaluationInput) async throws -> AWSMachineLearningGetEvaluationOutput
Parameters
request
A container for the necessary parameters to execute the GetEvaluation service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Returns an
MLModel
that includes detailed metadata, data source information, and the current status of theMLModel
.GetMLModel
provides results in normal or verbose format.See
AWSMachineLearningGetMLModelInput
See
AWSMachineLearningGetMLModelOutput
Declaration
Objective-C
- (id)getMLModel:(nonnull AWSMachineLearningGetMLModelInput *)request;
Swift
func getMLModel(_ request: AWSMachineLearningGetMLModelInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the GetMLModel service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningGetMLModelOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Returns an
MLModel
that includes detailed metadata, data source information, and the current status of theMLModel
.GetMLModel
provides results in normal or verbose format.See
AWSMachineLearningGetMLModelInput
See
AWSMachineLearningGetMLModelOutput
Declaration
Objective-C
- (void)getMLModel:(nonnull AWSMachineLearningGetMLModelInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningGetMLModelOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func mlModel(_ request: AWSMachineLearningGetMLModelInput) async throws -> AWSMachineLearningGetMLModelOutput
Parameters
request
A container for the necessary parameters to execute the GetMLModel service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Generates a prediction for the observation using the specified
ML Model
.Note Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.
See
AWSMachineLearningPredictInput
See
AWSMachineLearningPredictOutput
Declaration
Objective-C
- (id)predict:(nonnull AWSMachineLearningPredictInput *)request;
Swift
func predict(_ request: AWSMachineLearningPredictInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the Predict service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningPredictOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorLimitExceeded
,AWSMachineLearningErrorInternalServer
,AWSMachineLearningErrorPredictorNotMounted
. -
Generates a prediction for the observation using the specified
ML Model
.Note Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.
See
AWSMachineLearningPredictInput
See
AWSMachineLearningPredictOutput
Declaration
Objective-C
- (void)predict:(nonnull AWSMachineLearningPredictInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningPredictOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func predict(_ request: AWSMachineLearningPredictInput) async throws -> AWSMachineLearningPredictOutput
Parameters
request
A container for the necessary parameters to execute the Predict service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorLimitExceeded
,AWSMachineLearningErrorInternalServer
,AWSMachineLearningErrorPredictorNotMounted
. -
Updates the
BatchPredictionName
of aBatchPrediction
.You can use the
GetBatchPrediction
operation to view the contents of the updated data element.See
AWSMachineLearningUpdateBatchPredictionInput
See
AWSMachineLearningUpdateBatchPredictionOutput
Declaration
Objective-C
- (id)updateBatchPrediction: (nonnull AWSMachineLearningUpdateBatchPredictionInput *)request;
Swift
func updateBatchPrediction(_ request: AWSMachineLearningUpdateBatchPredictionInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the UpdateBatchPrediction service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningUpdateBatchPredictionOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Updates the
BatchPredictionName
of aBatchPrediction
.You can use the
GetBatchPrediction
operation to view the contents of the updated data element.See
AWSMachineLearningUpdateBatchPredictionInput
See
AWSMachineLearningUpdateBatchPredictionOutput
Declaration
Objective-C
- (void)updateBatchPrediction: (nonnull AWSMachineLearningUpdateBatchPredictionInput *)request completionHandler: (void (^_Nullable)( AWSMachineLearningUpdateBatchPredictionOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func updateBatchPrediction(_ request: AWSMachineLearningUpdateBatchPredictionInput) async throws -> AWSMachineLearningUpdateBatchPredictionOutput
Parameters
request
A container for the necessary parameters to execute the UpdateBatchPrediction service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Updates the
DataSourceName
of aDataSource
.You can use the
GetDataSource
operation to view the contents of the updated data element.See
AWSMachineLearningUpdateDataSourceInput
See
AWSMachineLearningUpdateDataSourceOutput
Declaration
Objective-C
- (id)updateDataSource: (nonnull AWSMachineLearningUpdateDataSourceInput *)request;
Swift
func updateDataSource(_ request: AWSMachineLearningUpdateDataSourceInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the UpdateDataSource service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningUpdateDataSourceOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Updates the
DataSourceName
of aDataSource
.You can use the
GetDataSource
operation to view the contents of the updated data element.See
AWSMachineLearningUpdateDataSourceInput
See
AWSMachineLearningUpdateDataSourceOutput
Declaration
Objective-C
- (void) updateDataSource:(nonnull AWSMachineLearningUpdateDataSourceInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningUpdateDataSourceOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func updateDataSource(_ request: AWSMachineLearningUpdateDataSourceInput) async throws -> AWSMachineLearningUpdateDataSourceOutput
Parameters
request
A container for the necessary parameters to execute the UpdateDataSource service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Updates the
EvaluationName
of anEvaluation
.You can use the
GetEvaluation
operation to view the contents of the updated data element.See
AWSMachineLearningUpdateEvaluationInput
See
AWSMachineLearningUpdateEvaluationOutput
Declaration
Objective-C
- (id)updateEvaluation: (nonnull AWSMachineLearningUpdateEvaluationInput *)request;
Swift
func updateEvaluation(_ request: AWSMachineLearningUpdateEvaluationInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the UpdateEvaluation service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningUpdateEvaluationOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Updates the
EvaluationName
of anEvaluation
.You can use the
GetEvaluation
operation to view the contents of the updated data element.See
AWSMachineLearningUpdateEvaluationInput
See
AWSMachineLearningUpdateEvaluationOutput
Declaration
Objective-C
- (void) updateEvaluation:(nonnull AWSMachineLearningUpdateEvaluationInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningUpdateEvaluationOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func updateEvaluation(_ request: AWSMachineLearningUpdateEvaluationInput) async throws -> AWSMachineLearningUpdateEvaluationOutput
Parameters
request
A container for the necessary parameters to execute the UpdateEvaluation service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Updates the
MLModelName
and theScoreThreshold
of anMLModel
.You can use the
GetMLModel
operation to view the contents of the updated data element.See
AWSMachineLearningUpdateMLModelInput
See
AWSMachineLearningUpdateMLModelOutput
Declaration
Objective-C
- (id)updateMLModel:(nonnull AWSMachineLearningUpdateMLModelInput *)request;
Swift
func updateMLModel(_ request: AWSMachineLearningUpdateMLModelInput) -> Any!
Parameters
request
A container for the necessary parameters to execute the UpdateMLModel service method.
Return Value
An instance of
AWSTask
. On successful execution,task.result
will contain an instance ofAWSMachineLearningUpdateMLModelOutput
. On failed execution,task.error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
. -
Updates the
MLModelName
and theScoreThreshold
of anMLModel
.You can use the
GetMLModel
operation to view the contents of the updated data element.See
AWSMachineLearningUpdateMLModelInput
See
AWSMachineLearningUpdateMLModelOutput
Declaration
Objective-C
- (void)updateMLModel:(nonnull AWSMachineLearningUpdateMLModelInput *)request completionHandler: (void (^_Nullable)(AWSMachineLearningUpdateMLModelOutput *_Nullable, NSError *_Nullable))completionHandler;
Swift
func updateMLModel(_ request: AWSMachineLearningUpdateMLModelInput) async throws -> AWSMachineLearningUpdateMLModelOutput
Parameters
request
A container for the necessary parameters to execute the UpdateMLModel service method.
completionHandler
The completion handler to call when the load request is complete.
response
- A response object, ornil
if the request failed.error
- An error object that indicates why the request failed, ornil
if the request was successful. On failed execution,error
may contain anNSError
withAWSMachineLearningErrorDomain
domain and the following error code:AWSMachineLearningErrorInvalidInput
,AWSMachineLearningErrorResourceNotFound
,AWSMachineLearningErrorInternalServer
.