AWSMachineLearningCreateMLModelInput
Objective-C
@interface AWSMachineLearningCreateMLModelInput
Swift
class AWSMachineLearningCreateMLModelInput
-
A user-supplied ID that uniquely identifies the
MLModel
.Declaration
Objective-C
@property (nonatomic, strong) NSString *_Nullable MLModelId;
Swift
var mlModelId: String? { get set }
-
A user-supplied name or description of the
MLModel
.Declaration
Objective-C
@property (nonatomic, strong) NSString *_Nullable MLModelName;
Swift
var mlModelName: String? { get set }
-
The category of supervised learning that this
MLModel
will address. Choose from the following types:- Choose
REGRESSION
if theMLModel
will be used to predict a numeric value. - Choose
BINARY
if theMLModel
result has two possible values. - Choose
MULTICLASS
if theMLModel
result has a limited number of values.
For more information, see the Amazon Machine Learning Developer Guide.
Declaration
Objective-C
@property (nonatomic) AWSMachineLearningMLModelType MLModelType;
Swift
var mlModelType: AWSMachineLearningMLModelType { get set }
- Choose
-
A list of the training parameters in the
MLModel
. The list is implemented as a map of key-value pairs.The following is the current set of training parameters:
sgd.maxMLModelSizeInBytes
- The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.The value is an integer that ranges from
100000
to2147483648
. The default value is33554432
.sgd.maxPasses
- The number of times that the training process traverses the observations to build theMLModel
. The value is an integer that ranges from1
to10000
. The default value is10
.sgd.shuffleType
- Whether Amazon ML shuffles the training data. Shuffling the data improves a model’s ability to find the optimal solution for a variety of data types. The valid values areauto
andnone
. The default value isnone
. We <?oxy_insert_start author=“laurama” timestamp=“20160329T131121-0700”>strongly recommend that you shuffle your data.<?oxy_insert_end>sgd.l1RegularizationAmount
- The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L1 normalization. This parameter can’t be used whenL2
is specified. Use this parameter sparingly.sgd.l2RegularizationAmount
- The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L2 normalization. This parameter can’t be used whenL1
is specified. Use this parameter sparingly.
Declaration
Objective-C
@property (nonatomic, strong) NSDictionary<NSString *, NSString *> *_Nullable parameters;
Swift
var parameters: [String : String]? { get set }
-
The data recipe for creating the
MLModel
. You must specify either the recipe or its URI. If you don’t specify a recipe or its URI, Amazon ML creates a default.Declaration
Objective-C
@property (nonatomic, strong) NSString *_Nullable recipe;
Swift
var recipe: String? { get set }
-
The Amazon Simple Storage Service (Amazon S3) location and file name that contains the
MLModel
recipe. You must specify either the recipe or its URI. If you don’t specify a recipe or its URI, Amazon ML creates a default.Declaration
Objective-C
@property (nonatomic, strong) NSString *_Nullable recipeUri;
Swift
var recipeUri: String? { get set }
-
The
DataSource
that points to the training data.Declaration
Objective-C
@property (nonatomic, strong) NSString *_Nullable trainingDataSourceId;
Swift
var trainingDataSourceId: String? { get set }